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INTRODUCTION AND OVERVIEW

Bruce Choppin
Center for the Study of Evaluation, UCLA

The research proaect reported here deve]oped out of a growing
concern at the fragmentation that is oqcurr1ng within the psychometrlc

f1e1d D1ssat1sfact1on with the limitations 1nherent in trad1t1ona1

_forms of mental test analysis (as typ]fled by the norm- referenced '

multiple~-choice test of achievement), has.led in recent years to a

“‘variety of new psychometric theories and procedures. "The traditional -

approach to testihg was deve]oped in order td‘provide ranking of

stidents and/or to select relatively sma]] “proportions of students. for

—

spec1a1 treatment. In these tasks it was fa1r1y effect1ve but it 1s

increasingly seen as inadequate for the broader spectrum of quest1ons
that Educat1ona1 measurement is now called upon to address. Novel
app11cations have stimulated new psvchometr1c mode]s ‘and methods, each

shaped to deal with the specific problems of the particular -

N A

situation. The last two decadas’ have seen the development of new

—_—

)

types of tests, new scoring methods, new procedures for item analysis,

-

~and entirely new conceptions of the mental measuremerit process.

A marked character1st1c of the profess10na] literature on these
novel approaches to measurement is its parochialism. Many of the most
prolific psychometricians display little interest in models other than

their own, and there have been few, and mostly inadequate, attempts to

N
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integrate theories and results. The proponents of different models
have different objectives; implicitiy or explicitly they make
differing assumptions; and they freduentiy use the same words and

phrases to mean different things (e.g., religbility, accuracy,

' guessing, error and true-score). Secparate methodologies ba?ed on

different models have diverged to a point where it is nq‘ionger
possible to identify a mainstream approach to educational measurement,
and where informedtand balanced advice on the full range of
alternative approaches is almost impossible tg‘obtain.

The present project was designed to take advantage‘of the wide‘
range of interest and experience of~different approabhes to

measurement JO1nt1y neld by the professional researchers who

constitute the “methodology group" at CSE. The proapct had two

related Qoais. The first was to document in some detail the,

‘phiiosophy, assumptions, mathematical procedures, advantages,

limitations, etc. of each of five different approaches to the
measurement of achievement that currently command considerable
psychometric interest. We have tended'to describe these five
approaches as a1ternative mggels_of achievement measurement and in
the strict scientific sense this is true, though\a comprehensive.
mathematical fdrmu]ation is easier for some than for others. This
detailed documentation would enable us to clarify our understanding of
the similarities and differences among the models so that we might

-

explore with rea1 data thegconsequences of ‘adopting one analytic

~

strategy rather than another._éf;:’é.




The second purpose,arising from: the first, was to develop a much

needed “user's quide" that would set out, fairly and comprehens1ve1y, .

the rationaie under1y1ng each of the separate approaches and provide
sound advice to ‘the potential user regarding the selection of an
approach and how these models may be operationalized.

The -models we consider all belong to the class of latent

structure models in that their ana1ysis is directed to the inferentia’
c]ass1f1cat1on of test 1tems and/or persons, based on theoretical |
/
assumptions concerning the structure of test data and cohceptua]
theories of measurement#_ Within this framework, the different models
may be seen as attempts at the solution of a variety of measy;ement
probtems. Sometimes, even when the models or procedures appear
similar, the issues of central concern to cne may not be of any
particular interest.to the other. In the measurement area, we meet
variations in phi]osophy and value systems as well as in statistical:
referents. ' ,“ —

A good examp]e_of this can he found‘ip the recent controversy
over latent tratt models. Although the Rasch one-parameter model and
the three-parameter model developed by Birnbaum and Lord appear to
have a 1ot in common'(the Rasch modei is mathematically a special case
of Lord's model) they are cdnceptua]]y'quite distinct Lord began
some thirty years ago with large quantities of 1tem response data

which he wished to understand and exp1a1n. For him it was 1mportant

to find a mode] that fitted his data and cou1d make sense of it.

_Today his d1sc1p1es view the Rasch model as a model that does not fit

their, data well. It is founded on assumpt1ons (e:gq., no guessing)

~
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which are often not mét in pxactice. This group of measurement
lspecialists‘right]y,diséard the (inexpensive) Rasch mode]gﬁn favor bf.
a more complex analysis that better meets their need to "fit" data.

On the otﬁer hand, Rasch was developing his model (during the 1950's),
" not on the basis of actual test data, but rather on a series of "~ |
principles and axioms fo;-measuremen; systé;;/tﬁat he extracted from
other rga]ms of scientific experience. He did not create his’model
primarily to explain existing-data sets, but rathgr to fon$ the basis

for constructing new measu-emeht systems. For his fq]waers, test

jtems must "fit* the model if they are to be useful for measurement.

The goal is to fihd items that do fit the'mode1 so as to;permit the
construction of test instruments with ;he optima] properties that
Rasch describéd.

Unfortunately, many psychometricians in each camp hav;?ngx been
able to appreciate the distinction between these two approaches.
There have been public debates during witn Ifem Response Theorists
. haver condemned the Rasch. model for not "fitting" reaT’data; while the
Rasch prac#ﬁtionersIattack Item Response Theory for dealing with
models whose parameters cannot be satisfactorily estimated and which
do not s:t¥sfy the requirements for “"objective measurement".. The
criticisms are sound in themselves, but they do not ré]@te to the
issues that the oth;rﬁside holds to be important. ‘ BN

There are other, though perhaps less’dramatic, examples of where
) different .priorities and different concerns have léd to some breakdown
in communication. For examp]e,\Genera]izabi]ity Theory is directly

concerned{with measures, and with analyzing the "errors" associated

with them. However, it treats these on a grouped basis as "error
. // ,
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variance" and makes certain assumptions about their distribution. By
contrast, latent trait theorists use "standard errof of measurenent"
on an individual basis, finding it to be a more usefu]lcpncept than
the conventional one of test reliability. Latent trait fheorists also
make assumptions about the distribution of these errors, and-in
general thege assumption§ are not compatible with those of G-thigry.
Both approaches are useful for solving specific measurement pr lems,
but the%r areas of application are very differént. The extent to,
which the %wo~approaches may be regarded as complementary, and may
indeed sdpport~bne another, is not well understdod. |

Qur work hés addressed these and other questionc. We have
brought some illumination to previously dark and shéddowy areas where
two or more‘of the models come together.

However, we do not fee1.that we have yet reached our second
objective of deve]dping a comprehensive and useful guide to practice.
- More empirical Qork.in comparing the effects of the different models
needs to be done, and the handbook we wish to develop will contain
more demonstrations using real data than are found in this report.
There has not been time in the last twelve months to carry out as much
of this work as we would have liked, but we feel that we are on the
right track ﬁhd that 6ur work is sufficiently important for its
completion to be given some priority.

The format of the present report is described below. There “are

two introductory chapters. The first analyzes the history of mental

testing to show how conventional item analysis procedures were

9
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developed (in response to which pressures and constraints), and how
dissatisfaction with them has led to fragmentation and the range of
distinct conceptual and methodo]ogﬁca] approaches to-achievement
testing that now exist. The second paper analyzes in. depth a central
and continuing problem in mental testing, and one which not merely
i]]ust?af?s“phe shortcomings of the traditiona] approach, but
highlights the differences befween the modern alternatives.

There fallow five papers treatfng each of the selected approaches
individually but aécording to a standard format.

These "models” are: the S-P Chart Analysis developed by Sato
which may be viewed as a[simplified form of Guttman scaling; two

Jatent trait logistic models (Rasch with one item parameter and Lord

with three item parameters)/given separate treatment because of the

philosophical and conceptual contrast cited above; a latent class

mode] to which the estimation of true scores is central; and

-'Genera1izabi1ity Theory which, though somewhat different in scope from

those mentioned earlier, offers a different mathematical mcdel for °
test data, and some powerful statistical procedures for interpreting
them.

;Fo11oﬁing this we preéent a summ;}y of the empirical work carried
out so far in tesging out different models on common sets of data.

~In conc]u;ion; a chapter (available only in outline af the |
present) summarizes and synthesizes the earlier parts of the report
and draws some definifive conc]u%ions regarding‘the applicability of

the various models to different measurement problems.




EDUCATIONAL TESTING AND MEASUREMENT: A BRIEF HISTORY
1 David McArthur
Center for the Study of Evaluation, UCLA

Educational asﬁesshent in Fhe Western tradition has a long buf
very irregular history. Seven centuries ago, one English college was
deemed remiss in its responsibilities bécause its founder had
determined that its recent graduates “...expressed themselves very
inaccurately in the 1ear(ed 1anguage§;..“ (Sylvester, 1970, p.19) the
method of such determinalion was not desC?ibed. A tradition of oral
examinations was built up over several centuries, only to disintegrate
almost completely by the time Isaac Néwton attended college aboyt
1660; not only were there no'examinatiOns but frequently the lecturers
themselves simply never shdwed up for classes. Hodever, in another
“hundred years, both Oxford and Cambridge, recogniz{ng the deteriorated -
situation, dgcided to jmpﬁove their curriculum and instituted regular
written‘exami;ations in a variety of topics. Tﬁe exams of this era 
were almost exclusively essay questions emphasizing factual recall;
one extané example shows eight questions each in history and
geography, and six %n grammar, primarily Latin and Greek. In the
education of the younger pupils, examinations began to becorfe more
prevaf:nt as textbooks for the grammar school came to bé‘formu1ated
into distinct grade 1eve1§.

Theinew sequences of textbooks gllowed a more precise grading to

be implemented in schools in various parts of Europe...Within the

school a further step was the development and application of the

principal of a child's regular progression through grades at
various intervals of about a year' (Bower, 1975, p.419).




The Jesuits, finding that such a procedure'fit perfectly into their
concept of Eatjg_(the systematicaily'ordered'body of knowledge) took
up the idea witﬁ vigor, and it rapidly spread across Europe.

Meanwhiie, in China, civil service examinations were already .
severa1 millenia old. The earliest proficiency testing dates froh
2400 B.C., and forma] procedures for exam1nat10n date from 1115 B.C.
Desp1te a concentration on literary rather than manager1a1 sk1115, the
system was toxbe the model for a aumber of efforts at standardizing
comsetition for\eiyil service positions in EUrope and the'U;S. during
tﬁe,ich century:‘ But in China the testjng system was abolished in
reforms at the beginning of the 20th century, as Western technologies
and educatiéda] orientations intruded into the Orient (DuBois, 1964,
1967). o,

In the United States, it was not until-1845, following Horace
Mand's advocacy of written examinations, that tlesting was incorporated
into eddtationa] practice. The first recorded examination was
administered in Boston that year, and‘the concept took hold quickly
(Englehart, 1950). Within thirty-five years, promotion from grade‘to
grade was no 1bnger made by personal recoﬁmendation Bﬁt instead
invariably was judged by success or fai]urel scored as a percentage,
on a written exam. Manﬁ]§ viewpoint of testing, while not using the
word “objective,"'carried with it a decided bias-towards objective
J,measurement and standard tests (Ruch 1929). The earliest objective
. educational tests are found in a book complete with questions, answers

and scales, by an English schoolmaster, dated 1864 (Kelley, 1927).

* Objective tests in spelling and arithmetic were in place in the U.S.

3
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By the 1é70fs. Then, in 1881, the superintendent of schools.in
Chicago, expressing a strong seffitiment.against testing in particular
(if not against seienée in general)-decreed that advancement of

+

studenps was to be carried out only by direct recommendations of
teachers and priggipa]s. Testing for purposes ef grade-level
-advancement was prohibited. His viewpoint was widely shared;
suddenly, the impetus forg“objective" ﬁeasurement and asséssment was
on the wane. “Ex*minationgﬁfor'grade_promotioﬁs were gradually

’

abolished in all the best schools,” claimed the superintendent's
successor. “The person. best qua]1f1ed to iLdge of a child's ability
to go on is his teacher...To say that any other test is necessary is a
travesty on common sense" (Bright, 1895, pp.274-275). By the end of
the nineteeeth cnetyry, educational t8sting had achieved a bad name.
Teachers were “teachi;g on the test,:‘devoting weeks of preparation
and drill to extanf editions of upeoming exams , and the public was’not.
pleased. | '

A comp]ete]y separate thread in the fabr1c of educational
measurement is found in a review of the history of stat1st1cs. The
first 1ectures in statistics date around 1660; the f1rst use of the
word “stat1st1c" is placed at 1749, in reference to thd accounting of
a]] the things that make up a ‘kingdom (Me1tzen, 1891). While -

\"

extensvve deve]opments in mathematics were being made during this time

-

(Newton, for example, was solving prob]ems in d1fferent1a1 calculus by

1676), the sett1ng out of facts and figures in the soc1a1 St16053§,f°r

'7many years was 11m1ted to tabulations of various facts, actuarial

‘tab1es, and census tak1ng, the first about 1769 in Denmark.

13
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Interestingly, some recognition of the importance of understanding
individual differences in mental abilities is found’in the field of

' astronomy by 1827 (Freeman, 1926). It was not until this century that
the word “statistics" came to refer exc]usiVe]y to quantitative O /,
approach§s; its origins apparently are tied to the Germanic distipline ;
called "§taqtenkunde" or study of "governments anJ politics. The
profession suffered a deciine as the old teachers passed away, and the
task of statistics was made increasingly narrow.

In 1806 and 1807'a passionate controversy arose against the
brainless bungling of the number statisticians, the slaves of the,
tables, the skeleton-makers of statistics...The opponents in the
sharp attack were themselves, however, not sufficiently clear how

. ‘new and precise limits for their science should be determined.
(Meitzen, 1891, pp.49-50).

An International Statistical Congress-was formed to attempt to resolve

the confusion; it met first in 1853 and showed a surprising degree of

success. Even though its members chcse to stay out of issues of

-~

statistical theory, in 1869 one of their resolutions declared:

...that in all statistical researches it is important to-know the
number of observations...; the qualitative value is to be '
measured by the divergences of the numbers among themselves as
well as the average...; it is desirable to calculate...the

average deviations (Meitzen, 1891, p.80).
Thése principles formed the basis for technical developments in
educational statistics into the twentieth century: .one of the first .

e texts (Rugg, 1917) devoted most of its efforts to tabulation,

averages, frequencies and variabilities. Despite several pioneering
. — _— . .

studies in educational attafnment, in large measure the collection and
analysis of data at this time was confined to tabulatiens of. school

attendance and costs. The statistical societi¢§“0f the day were deeply

~




crime, and spent no time at all” on as;essing“educationa1 achigvement
beyond such indices as the ability toasign one's own name (Cullen, ’
1975). )

By the middle of the nineteenth century, considerable progress
had been'made in the ana1y§is of experimental data from agricultural
research. Good expérimentaf designs, including factorial and |
sp]it:plot techniques, were in place about 1850. Galton spent time
investigating how matpemétiea] solutions might best be developed for
data from studies of Charles Darwin, bui]ding a number of statistical !
“tools in'the proce%s, and was the first to atitempt measuring

characterfstics*of individha] intelligence (18§3f% But it was not

until Pearson's chi-square tegt (1900), and Student's t-test (1908)

that apprbpriate quantificatidn of educational data could be *
developed, although the latter, surprisingly, took a number of years
to catch on (Cochran, 1976). Fisher's analysis of variance (1924)
drew ‘heavily on these precrrsors but it too was relatively slow in
being incorporated into the repertoire of educational statisticians.
Guilford's text on fundamental statistics in 1942 awards analysis of
variance fewer than nine pages, embedded in a chaptér on reliability.

In 1890 appeared the first study of reliability (Edgeworth:
1890). In the same year.the seminal short article by Cattell (1890)
marked the first time the words "ﬁenta] tests" wére used tpgether.
Following Galton's 1ead, several iﬁvestigators in Germany began to
develop mental tests, and in the U.S. there was extenzqve interest in

the relationship of mental capacities to physical characteristics.

+ The American'Psycho1ogica1 Association set up a standing committee in

—
. . .
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1895 to consider cooperative efforts in mental and physical
statistics;.the American Association for the Advancement of Science
did likewise the following year. Binet, who had been working on
problems in mental reaSOn1ng since 1886, wrote an important article in
1898 on the utility of measurement and sca11ng in the appraisal of
human intelligence. 'Howevér, two major studies of testing around this

time (Sharp, 1899; Wissler, 1901) concluded that many of the available

'tests used for psychological rgigarch fell far short of their claims,

in both contght and method (Peterson, 1925). In education, Rice's
(1897) study of spelling attainment, using a sing]e list of 50 words
1n a test administered to 30,000 children, was a p1oneer1ng study,
which circulated w1de1y but gained few supporters (Wilds & Lottich,
1970). .

About the turn of the century there was a fair degree of public

discouragement about educational testing. However, aboutthis time,

3

the first survey of school facilities and\ educational practice was

conducted, the College Entrance Examination Board was established, and
in 1902 the fvrst course in educational measurﬁmenf/§;s taught (by
Thorndike at Co1umb1a) (Meyer, 1965). Concurrently, 1nterest in the
concept of general 1nte111gence was being pursued by a number of(
1nvest1gators, following a suggestion by Galton in 1883 and\é study of
1,500 children conducted in 1891 (Burt, 1909). In the ana]ys1s of
results from the latter investigation, however, ceme the' Zp11c1t
realization that statistical methods for educationa] measurement were

in desperate need of thoughtful improvement. Burt specdiated that the -

consistent failures of research investigations in the area of general

intelligence before the turn of the century




“ "'1-7"'

P
7/

were largely due to their reliance for discovery of correlations

upon mere inspections of the-data they obtained, instead of upon

quantitative determination-and mathematical deductiion (pp.94-95).
During the first decade of the twentieth céntury,’the growing impetus
for inereased statistical rigor could be felt in several areas;

measurement succésses in anthropometry and biology provided much

» needed support for such improvement. In 1904, Toulouse and Pieron's

twq\volume manual’ on laboratory ex:rriments included sections on
1nte11igence and ‘the measurement of individual differences. In 1906

the American Psychological Association created a permanent conmittee

‘charged with evaluating requirements for standard laboratory technique

and appraiSing both group and individual tests with attention to
practical applications. Binet's test for intelligence (1905) and

Thorndike's book on mental measurement (1904) had particular

.significance durihg'this fime, as did Spearman's (1904) paper on

general intelligence. By 1910, a vast number of tests-in skills like
English, spelling, handwriting, reading and arithmetic had emerged,
followed closely by more technical articles on topics 1ike numerical

analysis, standardization, validity and correlations.
r
.. American educators quickly realized that the scale idea rould
be applied not only to intelligence but to achievement as well.
There followed a phenomepa]]y creative period during which
testmakers developed instruments for virtually every aspect of
educational practice (Cremin, 1961, p. 186).

In 1913, the National Couyci] of Education released a major
report on standards and tests for measurigg»school'efficiency, and

expressed this sentiment: S
We are only begining tz{ﬁave mea%urement undertaken in terms of
standards or units whi are, or may become, commonly
recognized. Such standards will undoubtedly be developed by

7

is

means of applying scientifically derived scales of measurement to. = -

many systems of schools. From such measurements it will be
possible to describe accurately the accomplishment of children
and to derive a series of standards...(Strayer, 1913, p.4).

N lf?
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Graves, reviewing the condition of education in 1913, expressed the

sentiment that the application of mathematics to measurements in

-t

education was one of the most significant movements-of that timé.

Developments in objective measurement of intelligence and

educational achievement came to a head with the crisis of the Great

¥

;\r. Work in Germany on the screening ,of inductees had heen in

progress since 1905; Binet and Simon (1910) disclissed the application

af intelligence testing in the Frengi army (Peterson, 1925). In the
} §

U.gx, Terman's revision of the Binet scale was completed by 1917, and
was applied soon thereafter to the testing of 1.7 million recrujts.y A

small team of educational psychologists produced the Aqmy ATan and

Beta tests of intelligence between May 28 and June 10, 1917; a copy of”

the examiner's manual was enroute to the printer within a month.
Immediately after the war, as the Army was sellinhg théhéands of unused
'testvblanks; both educational specialists and the pubiic beéah to
realize that 9bjectivé test results had to be tagen_with some degree

of caution. One of the originators of the Army Alpha expressed the

sentiment unambiguously: “We do not know what}inte]]igencé is and it -

is doubtful if we will ever know what knowledge is" (Goddard, 1922,
quoted in Spring, 1972, p.5). Even so) by 1920, ubjective testing

: . . « : .
formed»the core of educational assessment methods. The Journal of

Educational Measurement devoted severa] jssues in 1921 to a Symposium

on scientific measurement of intelligence.
During the decade that followed, the objective assessment of
intelligence "swept America, and to a lesser extent Canada, like an

educational crusade...The critics were numerous but few in comparison
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to the advocates...?(Marks, 1976, p.10). McCall®s (1922) book on

educational measurement and.Monroe's (1923) the foT]owing year were
the first to set out the proéedures for a mneu type examination," the
multiple- chotte and true-false tests. Principles of test construction
began to earn chapters of their oz/g and the variety of
1nterpret§trons and uses of tests was becoming a major cons1derat1on
fort many educators,(Monroe, 1945). Then came the first contr1but1ons
to what is now recognized .as c1ass1ee1 test theory: Thurstone se
(1925, 1926, 1927) articles on the scoring of 1nd1v1dua1 performand{

- Ruch and DeGraff s (1926) study of corrections for guessing, Ruch's

(1929) Thg ObJect1ve or New Type Examination, and Thurstone's The

Re11ab111ty and Va11d1ty of Tests, 1931. g

The concept of reliability is illustrative of the h1stor1ca1
deve]opment of educationa]-measurement. Because of its basis in .
»corre]ationa] @ethbd, which was already well advanced at the turn of
the century, a number of technical articles aupeared quite'early
concerning the statistica] nature of reiiability indices. By'the time
that a maJor study was 1auneﬁed in the late 1920's by the Amer1can‘“

‘H1stor1ca1 Assoc1at1on s Comm1ss1on on the Soc1aP/Stud1es 1nto the
nature of test1ng in social sc1ences eduSat1on, reliability measures

were regarded as essential by technical specialists but general]y

‘dtsreba?ded by practitioners. . Under the counsel of Truman Kel]ey, a
large-scale investigatioﬁ was conducted on the use of tests for
determining.overall class and schoo1'perfonmance,\recognizing ' R

individual skill levels and individual differences, and appraising -

‘attitudes and personality traits. "It also studied the utility of the :

RN i
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"new-type" tests. In the long run‘both tﬂe social science specialists
and the educationa] méésurement“;echnicians were disappointéd in the
results of the study. The former were not pleased by,tﬂe tendency of
short-answer and multiple-choice tests towards fragmentary
presentaEHOn of, and limitations to, simple facts in the chrricu]um
and the de]efion of shades of'meaﬁing: The latter fef% that lack of
objective terms, which they saw as essential for objective
measurement, obviated the s%qdy‘s‘conc1u§ions. Kelley's feelings were
sufficiently strong that he wrote a 15-page appendix entitled “A
Divergent Opinion as to the Function of Tests and Testing" in which he
excoriated the opponents of testing with more thaﬁ a dozen tareful]y
rezsoned arguments Eégarding the appropriate scientific use of g
educapiona] tests, plus one or twg direct strikes to the more
emotional nature of the argument:

The opponehts (of {ésting) show no awareness of the tests of

reliability and validity of measuring instruments, either

judgments of teachers or of test scores. We believe that such

awareness is essential to any educator who is ngi content to work
in the dark (p. 489). L .

D |
In the areas of reliability and validity, technical proofs were
R "4‘, . . B
available as early as 1910 (Spearman, 1910) providing a rationale

behind error measurement and Brown (1910) giving a definition of‘true
score. But it was some time befor either term was given serious
treatment in thé standard texts. Taking a repreéentative contribution
from each decade, we find a half-dozen index entries fh Rugg's 1917

- text, 18 entries between the two in Ruch's 1929 text,’four chapters in -
his 1942 book, and eight fu11 thapters devoted to the two topics in

Gulliksen's 1950 text. However, by the 1930's there had accumulated a

©

!
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. /
var1ety of estimation procedures and a great deal of conqu1on of

terms {(Adams, 1936; Barthe]mess, 1931; L1nco1n,_1932) An attempt to
resolve the issues was made in Thurstone's small book on the topic in
1931, another in Kuder and Richardson's (1537) key ‘article in test
re]iabi]fty,_fo]1owed by Guttman's (1945) reformulation and Cronbach's
(1947) discusion of the Sereraf different kiods of reliability

y | coeffitients. The American Psychological Association tried tolﬁeso1ve
the various ‘discrepancies by committee id 1954. Tryon (1957) provided
an extensive historical review ot tHe reliability concept and a
domain—samp1ing reformulation. "The extraordinari]y massive
literature in this topic," wrote Cattell (1964), "...has never lacked
statistica] finesse and mathematical vjrtuosity_(p.l)", but he, too,
felt a need to suggest substantial redefinitiohs for botp reliability
and validity, which ip turn were ignored four years later with
publication of a definitive mathematica] apalysis by Lord aﬁh Novick
(1968).

The first formulations of é 'sample-free' approach to mental
measurement are found in Law]ey's’(1943) analysis of item selection.
‘A1though the.probiem had been explored tangentta]]y by Horst (1936)
and more recent]y.by ?erguson (1942), his paper was among the earliest
N to seek mathemética]ly‘rfgorous justifications for the se]ection of

maximally discriminating test items, and to examine in some detail the

-concept of item ;haracteristic curves. Tucker (1946) provided further
l_ stat1st1ca1 support. Gulliksen (1950) sumharized the early work ih ‘

true score theory, and Lord explored the app]1cat1on of latent trait

theory to test theory with his doctoral disSertation, pub11shed as

- »
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Theory of Test Scores (1952). Interestinbiy, he felt that the actual

utility of large portions of the theory/@ouid be 1imited in practice
by the difficulty in obtaining sufficiéntiy large data sets, and did
not publish about the probiem again fér another ten years. At that

point he presented an important deve{opment the beta- binomial model

of the frequency distribution of true scorec and raw scores (Keats &

" Lord, 1962), and further refined tne definition of ‘true scores in Lord

& Novick (1968). Meanwhile, Birnbaum explored certain statistical
properties of normal and ]Ogistiz characteristic functions in 1957 and
1958, but few other papers on this topic appeared until the 1960 Se
‘The sentiment has been expressed more thah once that ‘the science
of “educational testing has progressed‘fittuliy. Despite a plethora of

statistical developments, "most of the major theoretical and technical

distinctions and most of the principle points of dispute were in

existence’ by 1925" (Thomson & Shdrp, 1983) This includes such
diverse topics as item ana]ySis, test bias, the nature vs. nurture
arguments regarding 1nd1v1dua1 inteiiigence, and at least the |
beéinnings of factér,structure explanations for educational

®

assessment.
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TOWARDS MORE SENSIBLE ACHIEVEMENT - -

MEASUREMENT: A VIEW AND REVIEW

- 73 ' .
Kenneth A. Sirdtnjk'.‘
Center for the Study of Evaluation, UCLA

Introduction ,

Much of whaf’wi11 follow heré is a repeat of an unfamiliar--or at
1éast unpopular--theme. The esséncé,of this theme has been either impli-
cit 6r explicit in wrftings dating as far back as the early 1930's and
continuing up to the present. (See, for example, Wa1ker, 1931; Guttman,
1944, Loevingér, 1947, 1948, 1954; Rasch, 1960; Lumsden, 1961; Bent]er:
1971; and Wright and Stone, 1979.) Probably the most entertaining and

insightful review is a rarely quoted article by Lumsden (1976). = These

authors all propose different techniques (or variants of the same techniques) ~

aﬁd analytic models for scaling the itans on the ordinéry test of achieve-
ment. But they all have two Basic thfngé in common: (1) they are critical
of, and represent a]terna%ives to, classical test theory and (2) they op-

erate from fundamen%af]y the same notion of what it meéans t® measure. The

essence of thé common theme isy—biyntly, that classical (and classical-like)

test theories are not very useful when it comes to test construction and
analysis. T

Why has not the nearly exclusive practice of traditiona]1 test theory
methods abated during the last fifty years? Why does nearly every new issue

of journals like Psychometrika or Educational and Psychological Measurement

contain yet another theoretical exposition involving true and error score

theory or some esoteric reformulation of the same old reliability coefficient?

-,

Were the above authors and others like them just on a flight of fancy pro-
. i
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posing crazy ideas that happened to escape the eyes of critical revfewers?
No! They merely éha]lenged what to dafe2 amounts to over 70 years' worth
of archives of scholarly work-on test theory models bearing little resemblance
to how people ordinarily think about what it rea11y means to measure. To

be sure, each challenge did not offer a completely viable alternative to
tommon practi;e: But it seems to be part of the human condition to hang on
tenaciously to the familiar, to the security of a large investment, at least

until the market crashes and/or the tide of opinion noticeably changes

)

through the power of advertisement.

Such has been the case recently with thé increased use of latent trait
models, particu]ar]y.the model proposed by Rasch (1960) and popularized iﬁ
the U.‘S. by Wright (1968, 1969 [with Panchapakeson], 1977, and 1979 [with
Stone]). The point of this repdrt is not, however, to advertise any p;};

ticular measurement modei. Rather, I wish to continue advertising the

self-evident notion that how one conceptualizes the act of measurement

should have a lot to do with how one analyses the quality of the measure- /

ment act during its development, implementation and revision phases.

I wi11’restrict this discussion to the measure&ent of achievement
with jtems of theiusua1 correct-incorrect.(1-0) variety. (HoWever, the
basic notions are generalizable to ordered response scales more typ:1a1 in
the measurement of‘va1ues; attitudes, beliefs, opinions, etc.) 'My point

gﬁ.View regarding how the measurement act is ordinarily conceptralized is not

original nor very creative. It rests simply on analogy with measuremeﬁt
in the physical sciences where constructs are often experienced with the
senses. The measurement of length, in pérticu]&r,.a person's height, is

_the usual example and will serve well here. Certainly most constructs we

attempt to measure in the behavioral sciences are not directly experienced
\

b .t
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'énd this, of course; constitutes the main source of difficulty. But it

does not follow, necessari1j , that the generic notions of measurement be

any different. Nor does it follow that measurement models be deterministic,
i;g., be developed in fdea] terms from which deviations are -unaccounted

for. Probabilistic models are those wherein all deviations from the model

have an expected probability of occurance. Both deterministic and prob-

ahilistic models exist in”both the physical and behavioré] sciences.

) . -

Implicit in this view of measurement is an assumpt1on that the test

N

1tems are all measuring the same thing (construct, trait, etc. ). Extant K

. psychometric literature is rep]ete with confusion over what exact]y is

?meant by this assumption and the two commonly used terms -- unidimensional

and homogeneoug -- referencing sometimes similar and somet1mes dissimilar
emp1r1ca] 1nterpretat1ons of th1s assumption. The confus1on, not surpr1s—
1ng1y, reduces down to d1fferent views of the measurement act. Viewed in

its or1g1na] factor analytic sense, un1d1mqns1ona11ty refers to one inter-
pretab]e common factor explaining the item corre]at1on matr1x. This fits
well with the netion of_measurement‘as repeated single-item tésts and the j
concept of re]iaﬁfiity as internal consistency. But .internal consistency f

is only a necessary and not a suff1C1ent condition for a.single common N
factor.in an item set; yet, many trad1t1ona] test theorists (e.g., Gu111ksen,
1950;'Ghi§fg1i, 1964; Magnusson, 1966; and A]]en.apd Yen, 1979) and prac~.\

titioners have used both unidimensionality and’ homogeneity in reference

to the internal consistency of a set of items.
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To confuse the issue further, Guttman's (1944) "unidimensionality"
and Loevinger's (1947) "homogeneity" both, in empirical consequence, tefer
télthe cumulative ordering or scaling of 5 set of items -- a fundamentally
different notion of the use of items to measure a single construct. The

analogue of'this notion for probabilistic models (e.g., latent class and

©

latent trait models) is the concept of local independence, taken by many .
latent trait theorists (e.g., Lord & Novick, 1968: Hambleton & Cook, I977;

and Lord, 1980) as the equivalent of the assumption of unidimensionality.

~ (But see the discussion of Traub and Wolfe, 1981, p. 387.)

‘ From my point of view, I "assume that thgre exist®sufficiently = »
singular achievement constructs, represented by it%T sets, that are
psychologically interpretable and fhat are of potential instructional

- use. A reasofiably successful application of a measurement strategy is

necessary but not sufficient evidence for a reasonably successful effort ~

" at measuring a singular construct. ‘In other words, a singJ]ar construct
is assumed at the oqtset; a priori verification of the assumption, is,
' in essence, an exercise in content validity; necessary a posteriori evidence
lies, in.essence, in the degree of success.jn déve]oping the measurement / N\
L ~ device; sufficient evidence, however, is accumulated on]y-through fu}ther

construct validation studies.

<

In what follows, a common conceptual view 6fvth$ act of measurement
will be presented and contrasted, in general, with the act as implied by .
traditioha] test theories. This discussion will.then be ?unctuated by a .
more'specific overview of several traditional test theories to illustrate

the issue further. Finally, aTternative models will be reviewed which

are more in line with how the measurement act-is ordinarily conceived.
L . .

~
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£ - Precision and Accuracy: Disentang]ing the Concepts

-~

\

Measurement and Dependabﬂity4

.

It is important, first, to define measurement more explicity. yany
definitions have been proposed resulting in dfsputes over whatfgqes and
does, not constitute measurement. My interest is not to debate the
issue at a philosophical level, but rather to simply clarify how éhe

term will be used here. It will serve my purposes well by foliowing

[4

the lead 6f Torgerson (1958) who reserves the use of the term measure-
=5} il

ment as follows:

The logic of measurement deals with the conditions necessary
for the construction of a scale or measuring device. Measure-
ment as used here refers to the process by which the yardstick
is developed, and not to its use once it has been established,
in, say, determining the length of a desk. It is essential
that we keep this distinction in mind. The use of “the estab-
Tished yardstick in "making a measurement" is a rather simple
procedure involving merely the comparison of the quantity to
. be measured with standard series, or perhaps only reading the
A pointer or counter of an instrument designed for the purpose.
We are he(e concerned with the more basic probtem of estab-
lishing a‘suitable scale of measurement. s

....measurement pertains to properties of objects, and not to
the objects themselves. Thus, a stick ig not measurable in our
use of the term although its length, weight, diameter, and
hardness might. well be. ‘

Measurement of a property then involves the assignment of numbers
to systems to represent that property. In order to represent
the property, an isomorphism, i.e., a one-to-one relationship

' must obtain between certain characteristics of the number system
jnvolved and the relations between various quantities (instances)
of the property to be measured. oL

“ The essence of the procedure is the assignment of numbers in
. such a way as to reflect this one-to-one correspondence between
2 these characteristics of the numbers and the corresponding re-
) lations between the quantities. (pp. 14-15) '

Implicit in this usage is the preference not to use the term measure-
ment in the broader sense of Stevens' classic defjinition: "Measurement is
the assignment of numerals to objects or evénts according to rules."

(




(Stevens,;1951, p. 22.) Nominal scales, therefore, are not the result of®

Al

measurgment‘but of classification. Measurement presupposes, therefore,

that the object has a property that exists in magnitudes that can be

represented on either ordinal, interval or ratio scales. And again I

-

align myself with Torgers n who finds it uninteresting to worry about
what is or is not "permissable," 1n,géactice, with measurement scales
of these several types:

....a major share of the results of the field of mental testing
and. of the quantitative assessment of personality traits has
depended upon measurement by fiat. This is clear, for example,
when curves are fitted by the process of least squares or when
product-moment .correlations, means, or standard deviations are
computed. A1l of these presuppose that distance has meaning.
Hence, either explicitly or implicitly, the experimenter is
measurihg the attribute on an interval scale whose order and
distance characteristics have ‘obtained meaning-initially through
definition alone. '

The discovery of stable relationships among variables so measured
can be as important as among variables measured.in other ways.
Indeed, it really makes Tittle difference whether [a] scale of
length, for example, had been obtained originally through ar-
bitrary definition, through a relation with other established
variables, or through a fundamental protess. The contept is

a good one.. It has entered into an immense number of simple
relations with other variables. And this is, after all, the
_major criterion.of*the value of a concept. (p. 24)

The "act" of measturement, then, refers generally to both the logic

of measurement and the process of constructing a test, i.e., a rule or
TNt L '

set of procedures operationalizing the construct in a manner consistent

with the logic of'measuremént. What, then, is a test theory? I would

prefer that the.ﬁhrase’”te§t fheory“ denote the complete act of not only

g constructing the @easuring instrument, but also of assessing further the
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validity of that instrument.including its dependabi]itxé under specified

y N

conditions of use. . In other words a theory of testing, to be complete,

must include a measurement model, a dependability model and a validity

theory. This last ingredient really includes (and goes beyond) the mea-
“ !

 surement and dependability mod what justifies the usage of the

term "theory." I know of n past or current "test theory" that deals ex-

p11c1t1y with all three aspec Traditional test theories are theories of

dependab111§x}(some more restricted than others) with some va11d1ty theory.

The newer latent trartmode]s are just that, models for measur1ng\a
. X , {
presumed construct. The focus of this paper is clearly on measurement,

but by way of contrasting the act of measurement with the dependability

btained measures.

Now suppose we had before us a smaTﬁ collection of the usual multiple-
choice (or‘true false, completion, etc.) items of the type commonly found
on a test designed to measure a specific achievement outcome. On their
face; a]T.such,tests "look alike." However, depending upon the conceptual
model of measurement under1y1ng the analytical process for se]ect1ng these
jtems, this innocent lcoking collection could be qu1te d1fferent in terms
" of item composition and emp1r1ca1 characteristics. It is the contention
here that classical theory is conspicuously lacking in explicit regard
for the potent1a1 value of the individual item. By this I mean that there
is no explicit recognition of the measurement function served by items.

Classical true and error models characterize the consequence of applying

a measurement rule--they do not characterize the essence of the rule itself.

34
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Let's consider the "essence of.a measurement rule" by cont%nu{ng the .
ana]ogy'with measdring a person's height. In measuring height, a tape
measure and its properties operationalize the rule. .Instead of "tape mea-
sure,” 1et's use the simpler term "ruler." Suppose we use a ruler (of
§ufficient 1ength) to.measure peoples' heights. Traditional test
theories haVe a lot to say about whaf to do with the qptained measuremenf; they
have' 1ittle to say, howéver, about‘how the ruler is constructed in order to ob- -
tain the.measure, i.e., how the ruler is calibrated and how a numerical result
_eventually becomes associated with each ﬁerson as a quantitative indicant
of the height of the pefson. 'In other wordl,wrather than the question of

precision with whi¢h any given measurement is obtained, traﬁitioha] test
theories take the mea;urements as given and pursue the'qqgétfon of accuracy s
i.e., How consistent the measurement rule is over repeated appYicatioﬁs. |
Precision and accuracy are cornerstone concepts of any theory of
approximate numbers. They reflect fundamentally different ideas in<Fhé
‘measure;nt process. Yet they are used inter-changeably in-the bghavibra1~

sciences as a synonym for reliability. Two examples out of many are the

following quotes:
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The physical scientist generally has expressed the
accuracy of his observations in terms of the varia-
tion of repeated observations.of the same event. The
mean of the squared deviations of these observations
about the obtained mean is the "error variance." This . .
is a measure of precision or reliability....We regard o
reliability as the consistency of repeated measure- : -
ments of the same event by the same process.... . .
(Cronbach, 1947, p. 1.) ’ ‘ ‘
. ~ Reliability of measurement, then, pertains to the pre-

cision with which some trait is ﬁeasured by means of

specified opgrations....Such indices will be useful

for comparing_different tests s6 we can ascertain
which gives us the most precise or stable scores,

. : an will permit us to ascertain whether the relia-
bility with which a test measyres is sufficient for :
our purposes....Casting reliability*in terms of the
coefficient of correlation between parallel tests pro-
vides another way of describing the precision of
measurement. (Ghiselli, 19@4, pp. 215-218.) )

~

In,thegﬁhysical sciences, the concepts of precision and accuracy
N I /
are clearly distinguished although not always in the same way. In the

/
absence of empirical error, a measurement m precise to the nearest
3

"utb unit has ar jnherent absolute error equal to *u/2 . In.this case,

! accuracy beco:;; relative error due to imprecision, i.e., (u/2)/m. But
when empirical error exists--that is, error due to the measurer, the

i

measuree, and/or the measurement circumstances--accuracy (not precision) .

B | | ;

[
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is usually defined as in the first sentence of Cranbach's (1947) quote

above. The d t1onery is of little help in sorting out any systematic

distiqetions. For exampTe, Webster's New World Dictionary (College Edi-
tion) gives us this definition: '"Precision, the quality of being precise;
exactness; accuracy." And in the same dictienary, is this definition:

" ccurac&,-the quaiity of being accurate or exact;’ precision.”

At the risk of confusing the issues further, I‘wi11 elect the versions
of these two concepts that serve tokeep two fundamental properties of the
measurement act separable. Suppose in meaeuring the height of a persop,
the ruler is marked off in feet; we can then measutre anybody's height 0
the nearest foot. This is a statement of precision. Included- in thiszngl;
tion of precision is the overall length of the ruler. If it is only 5 feet
1ong; the measurement of people ‘ver 5 feet tall would necessarily be much
- less precise. Precisionds intrinsic in the construction of the measur-
ing instrument; it can be increased by concgptualizing and adéﬁng more hash
marks to the ruler. Half feet can be aned éo the ruler engp]ing the measure-
ment of height.to.be pfecise to the nearest half foot. It is not really
necesSary that the hash marké. bé at equal interva]s,'or that the addition
of hash marks be midpoints of each interval. |
Possibly a better conceptua11zat1on o# precision is gained by def1n1ng it
as the number of measurement decisions an instrument can potentially make.

The ru]er ca11brated 1n half feet can potentially make twice the number of
relative height decisions as can the ru]er calibrated in feet ‘ ;

To facilitate the analogy with test 1tems, the ruler can be reconcep-

tualized as a_co]]ection of straight sticks consisting of a 1-foot stick,"

a 2-foot stick, a 3-foot stick, and so on. The more precise ruler is re-




, conceptualized ég a set consisting of a 1-foot stick, a 1l%-foet stick,

a 2-foot stick, a 2%-foot stick, etc. Measurement of height, then, ig

the process of isolating two adjacent (ordinality being assumed) sticks
within which lies the height in question and-juaging.which of these sticks
is closest, i.e., to within u/2 units where u is the unit of precision.
A1ternative5y,vthe measure of a persan's height is the number of sticks
su}passed by the person's height (plus u/2). If the person is judged to

be shorter (by u/2 or more) than the stick, he/she is scored zero; if

ta11er he/she is scored one. &hepersdn's height is then the total score
after being tested on the set of sticks. Figure 1 Tays oﬁt the process
&jmmat1ca11y.#whether sticks are ordered as calibratiom marks on a ruler
or unordered and used ;ummativé1y, the result is the same: the Berson's
height is judged fo be 3 feet to tﬁe nearest foot. Thathis, the:persog‘s*
height is somewhere in-the theoret1ca1 interval of 2% to 3% feet. Ezgéj;

sion is inherent in the way in which the measur1ng instrument is galibrated

aﬁg made operational. ‘ .

Accuracy is reserved here as a term for describing the degree to which
,the use of the measuring instrument is error-free. Accuracy is an em-
/ pirical concept given an already cé]ib@ated instrument. Indexing the level

of accuracy involves repeated measurements under the circumstances in which

acqurgcy is required. In the above eXamp]e, to the extent that we can con-

sistently arrive at (or close to) the same measurement of height (to the
nearest foot or half-foot depending upon whiép ruler we use), we have an
accurate méasuring proceduré. The more accurate the procedure  the less

variability in obtained measurements over repeated measurement trials.

QO
QG
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Figure 1
Schematic Representation of the

\ | Act of Measurement
(Height as an Example) ‘ ,

Ordered Sticks:

Calibrations: 1 2 © 4 5

Unordered Sticks: / \L
v
-.-._.-J_.-.——1 ——————————————— —_ e = = = e -
V4
5I
4’
3!
2" ‘
e
Scores: 0 1 1 0 1 Total =(3)
, € 39 |
// ’ /{‘




The complete independence of the concepts of precision and accuracy
shou]d\be clear: A highly precise instrument can be grossly inaccurate
(a rubber measuring stick ca]ftrated to the 32nd of an inch) compared ,;_
to the acéyracy of a less precise instrument (a steel measuring stick - ;
. calibratedxxn yards). Moreover, accuracy is a function not only of instru-
ment "decay,“ but also of the c1rcumstances under which it is used Tech- ‘
nically, therefore, we ,assess the accuracy of the measurement Qrocedure
which includes error due to the instrument itself, the person dopng the
measurement, the person being measured, and the environment in Mﬁich the

measurement process takes place. ) l

\
Given this distinction, reliability {or, more generally, dependability) .

as defided by- classical (and classical-like) test theory models is clearly

' a synonym for the accuracy of a test. Empirically and theoretica]]y,'the'con— ’
cepts of reliability and dedendabi]ity have been concepts of repeated measure-
ments. In this sense, it mattens,litt]e whether the repeated measureﬁents

are reb]icates (strictdly parallel) or samples from a domain (randomly pare]]e]);
that is, the generic concebt of aceuracy remains. intact regardless of the
conceptual gha;;es in meaning of “true score" impiied by the several classical
models. So long as we envision only the composite result of the testing pro-
cess, the classical fﬁde]s are qu1te analogous to the physical model of mea-
surement. The test score is analogous to the "ruler score," i.e., the obtained
height measurement. If we are 1nterested in assessing the accuracy of a s1ng]e
ruler, then we could use the original classical test trzory model of strictly '

-

parallel repeat@d measurements. If, instead, we are more interested in the
\ ‘ ‘ “ /_—A
accuracy of a vériety of rulers (wood, steel, cloth, etc.) from different

manufacturers, then, the item samp]ing models of randomly parallei repeated
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measurements.yould be useful. 'The domain of generalizability changes,
. but the notion of accuracy does not--empirical estimates obtain through
repeated measurements, either with the same ruler (strict parallelism)
or with a sample of rulers (random para]1e11Sm) |

However, the physical model and traditional test theory mode]s part

company Qhen it comes to the notion of internal consistency. Inquiry

into-the internal consistency of a.ruler would be directed at the verifi-
cat1on of the calibrations v1§5a vis the construct in quest1on and the'
‘se1egted measurement un1t standard--an 1nvest1gat1on of the precision of
rmeasurement. In test theory, the inquiry is directed, as it should be,
toward the items. But in traditional theories, the 1nqu1ry proceeds by _
simp]& recasting.items into the same rolejas the test, viz., repeated
measurements--an investigation of the accu?&cxjof measurement.

Where in the traditional.test theor y models 1is ‘the concept of prec1—
sion? Conceptua]]y speaking, the answer is, "Nowhere." Now of course
precision is manifested in;the»test item, in particular, the difficU]th
of the test’Tf/”/,K/student pass1ng a more difficult test item evidences
more ability than does a student who can pass on1y a less d1ff1cu1t 1tem
The analogy with F1gure 1 should be clear. The collection of items is
the ru]er, conceptualized as an ordered bundle of sticks. The item diffi-
€ulties are analogous to the lengths of the sticks. Measuring the ability
of a student involves locat1ng that pa1r of adjacent items B and A such”
that the student correctly answers B (and all other 1tems easier than B)
bat not A (nor 511 other items more diffdcu]t\than A). Traditionally, the
student's measure is the ordina] pdsitionoof item B, or, equivalently, the .

-3
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total number of item$.answered correctly by the student.

W\\ Certainiy this anaiogy is lacking in some non-trivial respects. 1In
particular, the determinacy in the ordering of sticks is hard]y (if ever)
realized in the ordering of 1tems If stick C is shorter than §t1ck B,

and a student's height surpasSes the length of stick B, then\it will surely
pass that of itick C. Such is the beauty of heasuring constructs we can
undérstahd with our senses. But if item C is easier than‘item B, and a

\
|
_ student correctly answers item.B, then it is not\é]wajé a sure bet that . o

. he/she will correctly answer‘item C as we11.6 Such is the legacy of the
attempt to measure abstract behavioral constructs. Moreover, thé proce-
dure for assigqing'an invariant metric to‘the‘measuremeﬁt of height is
straightforwérdj&dt is much less so when using items to measure ability.

But I believe these to be minor details compared to the conceptual
identity between sticks and items and their role as calibrations
on the "ruler." The pgint to be made here is that this is not the role
cast for items by classical (or classical-like) test theories. pLest I
may have begun to lose soma\readers who are rusty on classical (and what
I am referring to as c1a§stfa1 11ke) test theory, I will turn to an over-
v1ew of several such theories w1+H‘the expressed intent of further 111us—
trating the argument thus far pr?sented (Readers already fam111ar w1th
these models may skip to the Disdussion in the next section with 1ittle

or no loss in contjnuity.) .

Traditional Test Theories
Some would probably argue (and justifiap]y so) that the sampling of
alternative approaches to follow should not be lumpcd into a single class

of test theories, especially one including classical test theory. I do
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_ this here only because, in terms of their fundamental conceptualization : v‘%ﬂ
of the measurement process and important empirical conseqiences, they are
more similar to each other than to the models to be discussec. next.

e

Classical Test Theory

L

The basic'postulate of classical test theory defines a belief regard-
ing the composition of the raw score obtained by a student,inamely, thg;:r

this observed score is simply the student's true score p]ug-what's left

over, commonly designated as the error score. ‘
. ~ .- . q 1

Using some fairly sfandard potation and the usual maf?ik']ayout of
&

the scores of n students‘on k items, we obtain the schematic in Figure 2.

Using T and E for true and error scores, the classical test theory model

posits for any student s that:

S ) S (1)

A number of relationships obtain frém this model when several additional
A .~

assumptions are made about the true and error score compon?nts of repeated

measurements on any student<7 Specifically, these assumptions are (a) |
errors are totally random and cancel each other out; therefore, the mean

error is zero (E= 0); (b) the correlation between true and error score

o W

components is zero (pTE = 0); and (¢) the correlation between errors

over repeated measurements is zero (pEE' = 0).
Assumptidn (b)” Terds directly to the variance composition of

the linear model above, viz., observed ~score variability is the sum of

variability in true and error scores:

~—

o7 * o o (2) o
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Figure 2° /
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Student-by-item raw score matrix and notation./ (Xsi =1lor0
. if student s answers item i correctly or incorrectly.)
/
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= . . |
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Assumption jc) leads further to the fundamental fheorem that the covariance -

between observed scores on -any two repeated measurements is equal to that

between the true scores on these measurements: L.

" Pyyr Oy Oy1 = Pprri Op Oy
XX X X 7 T °T (3)

Finally, if a fourth assumption is added--(d) the repg§Zed measure-
~ments ahe.gdral]g? measuﬁemenxé_where parallel measurements are dgfinedAQSf
having equal trué]sédreé (T=T) ahd'qquaiﬂerror varfanﬁps‘(oé-'= OEA)_;
then reliability (defined as the correlation between parallel measures, pXX’ =

pXX) is the equivalent of the ratio of true score to observed score vari-

ance:
. ,
L PXX 52 -
N\ X (4)
N

But this is also the coefficient of determination in predicting observed
scores from true scores (or vice versa), i.e., the correlation between
parallel measurements is equivalent to the square of that between observed

and true score components:

2
PXT

PXX
(5)

A little bit of algebraic manipulation of equations (2) and (4) gives us
an equation for the error variance in terms of reliability and observed -

score variance. In standarddeviation terms, this equation is .

o Iy /1-—pXX




and is commonly referred to as the standard error of measurement. Noting

again the relationship in (5), this equation also represents the standard
error of estimate in predicting X from T:

A

°F X PXT | (7)

So much for theory. In practice we have only what we observe--raw

_ 2 . . .
scores X and the var1ance of these scores sx which we use as an estimate

of °X l In view of the above theoret1ca1 re1at1onsh1ps, if we can, a1so

estimate pxx, then estimates for the rema1n1ng parameters can be automa-
t1ca1]y computed. The estimate of reliability (denoted LY ) is usua11y
obtained in one or more of three fundamentally different ways with atten-

dant differences in empirical interpretation. b

Reliability as Stability. This is the test-retest formulation of re-

Tiability ds the correlation between two administrations of the same test
, .

over a specified interval of time. If the time interval is too long and

allows for true individual changes in the construct being measured, then
the test-retest correlation has Tittle to do with reliability. But if the
time interval is well-defined in relation to the expected consistency in
individual true scores over that period of time, then the test-retest cor-
relation estimates the stability form of test reliability. |

Reliability as Equivalence. “This is the test—retest formulation of

reliability as the correlation between two administrations of para11e1p
tests at the same {or nearly so) point in time. This procedure most closely

approximates the classical reliability definition but reTies'heavi1y upon

'the extent of true equivalence between the tests. (The same test could,




éf course, be used twice, but then-practice effects might lead to in-
flated -test- retest correlation.) This procedure most c]osely approxi-

mates the emp1r1ca1 assessment of accuracy as d1scussed in the prev1ous

‘.

section.

A

Re]iabi]ﬁtifas Interna] Consistency. ‘This~{s the test-retest para-
dign taken to ‘its logical conclusidn. .For example, split-half reliability
is one form of internal consistency equaf to the corre]ation between two

'random halves of the test when adJusted upwards by the Spearman -Brown
. (Spearmar, 1910 & Brown, 1910) equat1on to correspond to the fu]] length

_test. But then we cou]d compute a “sp]1t fourths" coeff1c1ent by averag—

.

ing all poss1b]e,corre1at1ons between four random quarters of the test and :

adjusting this average according1y. _EVéhtua]Ty, we get down to the item
level, treating each item as a ;ara11e1 rep]icate "test."™ The intraclass
correTatiOnj(average inter-item correlation) stepped-up by a factor of k
(the number of items on the total test) by the Spearman-Brown formula turns
out tc be equivalent to the mean of all possible split-half coefficients

{computed using the Rulon-Guttman formula [Rulen, 1939 & Guttman, 1945])

and was origina]]& derived by Kuder and Richardson (1937) as their formula

| Zp;{1-p;) '
. kK e RS (8)
' X

oo 2 . . . .
Since pH(l-pi) is the: variance (Si) of a binary item, this formula is

number 20:

often written more genera11y'as

TS,
KR20 = k—'ff[- S‘.l (9)




can be decomposed into an additive

‘ . 2
Moreover, since the tota1 variance Sy
sum of all 1tem variances and twice the sum of all possible inter- 1tem

covar1ances, th1s formula can a1so be written as

« KR20 gty ' | (10)

i k Tij S .

average interitem covariance

1 ( average y k-1 (averaqe 1nter1tem
£ Gten : T )
item variance ovar1ance

~ From.equation (105‘jf‘is evident thét_this estimate.of feJiabiiﬁ;y
(a) approaches l‘as the number of items incréases (so long ‘as additiona]
items are positively correlatad with the total test score) and (b) is
a measure of the extent /to which items are intercorre1ated——with each oiher
or, equivalently, with the total ,test score. Hence, the use of the term
"internal consistency.” It becomes c1éar; then, that this is not only

an index of reliability, but also an index (necessary but not sufficient)

of the extent to which the set of items comprising the test are measuring . \

the same construct (ébi]ity). In the sense of irnternal consistency, ' . |
therefore, reliability has a direct bearing upon the construct validity |
of the test. As noted above, it is for this reason that many traditional
test theorists and pract1t1oners have used” the terms "homogeneous" and
"unidimensional” to refer to this property of a test A , f
‘In a nutsh$11, these are the tenets and consequences of classical
’/// test theory. I have ignored a few other important consequences, primari1y

those having to do with the conceptua]izqtidn of validity (effects of
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. . ‘ ]

test length, correction for attenuation, and so forth). For purposes ¢
of comparison, however, the concepts so far developed are sufficient -

-to illustrate what I believe to be’profodhd differences between~c1as1Q

~

sical test theory and ther, perhaps more realistic, measurement models.

.

Item Sampling Theory

~2macwoct

. One of the more difficult assumptions to accept (and empirically
g\ realize) is that requiring strictly parallel tests (or items). But with
a slight shift in perspective, this assumption can be avoided.
- Consider again thé layout in Figure 1. Suppose the k items are a rggggm

| sample from a Coi:;ffii!1y infinite population (uniVe}se, domain, pool,
 bank, etc.) of items over which a student's score would be meaningful.

}a; ‘ N . Thiékscore would tﬁeoretica11y‘be the studeﬁf's true score. Likewisé; - .
the n students can be\éoﬁceptuaT%zed as a random sample from an infinite |
population of s;udénts. And an item's true "score" (difficulty) is the
theoretical average score on that item for the population of students.

In essence, what we have is the well-known random effects analysis
of variance design, i.e., an n-by-k, students—?y—ifems, random matrix
§amp1e from ankin{inite students-by-items hatrix population. 'Once'again,
a linear, additive model is assumed; adopting the convention 6f using :

0 Greek letters for the population parameters, any student's (s) observed

score on any item (i) is decomposed as follows:

= u+ TS + 17]-} + Es,i ) (11)




where M = the overall mean reflecting the
onse relative

general Yevel of re
to-no response zero;

L trué score for students\s;
T = true score (difficulty) for item i;

3
€ = residual or error effect which could

also be regarded as the student-by-item
interaction effect (t mg;

a design

with one random observat1on per cell.

With the addition of one more critica] Bssumption——the statistica]

1ndependence of student-item responses-—the components of var1ance mean

xpectations

Expected
Mean Square

2
o + ko?
€ T

2 2
o + no
€ b1

0 (
- ~ square expectations shown in Tab]e 1 can be derived (Cornf1e1d & Tukey,
11956). | |
yoo . Tablel
’ ,Components of Variance Mean Squar
. For the nx k Random ANOVA Model
\ , Mean
N " Source, df Square
Students n-1 MSS
Items - k-1 MSI
- ; | Y
Error (n-1)(k-1) MSE

L s

S




Now an internal consistency form of re]iéBi]ify can be derived with-
; RS .
out resorting to a definition based upon strict parallelism. Already, in
accordance with the model, items can be characterized as randomly "parallel.”

We can proceed direct]y by defining reliability (pxx) as the proportion of

total score varianceA(oi) that'i% the true score variance (oi). Since the

model implies that - =~

. ‘ 1 2 o
e, = o vt o
o X o T ke > ¥ (12)
‘reliability can be expreésed'qs ' . ’
. 2- i
(o}
p = . T
XX 1 2
o k %

(13)

Using mean squares as estimates of their corresponding expected values,

reliability can be estimated as

- oS
MS5 MSE

XX
MS, |
> (18)

. I
which, with a bit of alge raic manipulation, can be shown to be identical

to equations (8), (9) and (10) above. (This form of KR20 was first deriVed
by Hoyt, 1941.) /ﬁgg, of course, is the corresponding estimated standard
error of measurement equivafept;to equation. (7).

In terms-bf atl1east twdfimportant applied cbnsequences (and there
are mofe), then, Both c1assica1 test-and item sampling theories lead to
the same result. Perhaps they are more similar than one might think.

\
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Indeed, with the exception of the strict versus randomly parallel test
diétinctions, both theories are formally equivalent. It can be shown that
the Cornfield and Tukey (1956) assumpt{ons of the random components model
imply assumptions (é); (b)-and (c) above for the c1assicai test theory
model, and vice-versa. (See Lord and Novick, 1968, section 2.7.)
Nonethé]ess, thé ANOVA - framework imp]ied By the ;tem sampling model
provides a convenient conceptual\énd analytic rubric thét "Iiberatés"
(Cronbach, et al., 1963) the\severa] classical re]iabi1ity_notions--that

is, the sampling modeT'emphasiZes the multiplicity of possible.reliability

' coefficients depending upon practical measurement consequences. Cronbach

and his associates (Croqpach, et al., 1972) have formalized these concepts
under the 1ab;1 “generalizability theory." In the simplest design, namely
that represented in Figure'l, the "generalizability" coefficient is, of
_Sourse,'given by equation (14), designated previously by Cronbach (1951)
as coefficient alpha (a). But other moreucomp1iéated designs’ are also
re]evgﬁt and are obtained by adding more factors (facets)--and, therefore,
more than one kind of true score parameter each with its corresponding re-
liability coéfficient--to the ANOVA design. Suppose, for example n.
classes are observed k times by f raters on o occasions. We can iow talk
about (and‘compute) reliability coefficients not only for the main effects
due to observations, raters and occasions, but for the possible inter-
~action effects as well. Using generalized Spearman-Brown procedures, data
from one study can then be used to estimate the k, r and o necessary to

reach desired’Féliabi1ity levels 'in a future study. Moreover, some facets

might be considered fixed and others, random; and some populations finite,
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others infinite--all depending upon the practical applications intended.
However, notwithstanding the considerable conceptual and applied
beflefits accrued through liberating classical test theory of its strict

b}

assumption of parallel measurements, both theories conceive the fundament&l\\\\

dynamic of an achievement tegt*identic y: Items play roles as replicate
measurement rules rather tha; calibrations on a single measurement rule.

Hence, they are first and foremost theories of accuracy--not of precision--

és these concep%s have-been defined above. ' - _ ,; _1:

B1nom1a1 Error Mode]

An interesting twist on the item sampTing model occurs if we restrict
our attention to the single student s and conceptua]ize his/her responses
to a random sample of k items as k 1?&$nendent b1nary events, each with
the probab111ty te of a correct answer where 4 is the hypothetically
true proport1on\correct score for student s in the gopu]at1on of items
~ from whence the sample was drawn. This is the simﬁ]e “loaded coin-flip-
ping" model, i.g., a binomial model, where fhe probability for success
(séy? "heads") is p. Over repeated trials of n coin flips each, the
standard deviation of the sampling distribution (i.e., t.e standard error)
of the observed proportions of'“heads" is well known to be JG;ZT:537:R N

Translated to the notation and purpose here, the standard error (of
measurement) for stud;;t s is the standard deviation of his/her sampling
distribution of observed propqrtion correct scores (?;) on repeated ran- - R

dom samples of k as described in the péragraph above. This standard

- error (denoted O¢ ) is given, therefore, .as
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(15)

This standéfd error of measurement is estiméted for each student by
correcting (15) for sampling bias &nd substituting observed §cbres for g

true scores:

’ ' X (1-%)
. s = o s

o N . 2 e TV Tk S |
/ N ¢ () B
4 ' * ' S : R

It should be clear from equation (15) that for item sampled tests

Y of fixed length k, different standard errors of measurement obtain for
\ * different true scores. Students obtaining a score of 50 percent will have
s, ’ the largest estimated standard error, i.e., .S/OE-I; Se decreases syme-

trically as scores either go up towards 100 percent or go down towards
0 percent. .

This outcome, of course, is completely contrary to the assumgpion
of independence'of true and error scores in the classical test theory : -
and item sampling. models. In both of thesélmodels, the standard error '
of measurement (equation [7]) is a constant fpr all students regardless g

of their observed scores.
s tb

We can, however, derive a single standard error of meaéurément for
the binomial model by simply computing the mean of the indjvidual Ses' o
! 7 > -
« To do #his requires generalizing the binomial error model for an indivi-

dual's score to that for a distribution of scores. (See Lord and Novick,

{
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as an.approxihation to KR20. .. Clearly, it is a function only of the ob-

served score mean (or mean item difficulty since np = x ) and observed

- 2.28 -

bt
1968, Chapter 23.) And in so doing, a-couple of interesting results
emerge. Assuming a linear re1ationship between true and observed scorés,
the usual formu]at1on of re11a6111ty ;2 the ratio of true scor ob-
served score variance leads to the following estimate for Jnféf:::/;on-
sistehcy:
a \' T oTTTm mmAmmmmme T "KRZI“" =" ’_‘_ E_' '-QL__X_J - et e e b = - amrereaen ronran - et ]

(17)

This, of course, is Kuder and Richardson's formula 21 deve]oped’origina11y

At

score variance. KR21 will always be less than KR20 unless there is

no variation in item difficulties. When all items are of equal difficulty,

tical to formula (8).

they ‘are, of course,. equal to their average and formula (17) becomes iden-

Analogous comparisons hold for 4ie standard error of measurement.
For the binary model, it follows thl; the estimated correlation between
true and observed scores is v KRZi and the estimated standard error of.

measurement is:

sio= s, /1-(kr21)”

(18)

It can be easily shown that s; is the mean of the individual student stan-

dard errors of measurement sc . This quéppity will always be greater

than its analogue 1in classica1<and item sampling models (equation [7] with

L-




sample estimates) unless, agajn, item difficuities are equal.

Discussion

Thus, excepting theltest con§truction consequences of strict versus
randomly parallel items, all three "traditional" models appear, for all
practical intents and purposes, to be equivalent when item difficulties

are equal (or nearly so). This makes a lot of sense when one teases out

T " the subtle differences in the cohcept1ons oF tyue score-inherent- fmeach-:--=rwrem

model. In the general binary error model, the true score is a parameter

 of the item population, but each student receives a different randomly

sampled set of items. Ordina}ily, a student will have different true

scores on éach of- those item samples, but these are not the true scores
of intgrest. Rather, it is the mean of these true scores (the item popu-
lation true score) that is to be estimated for each‘student. A similar
conception of true score holds for the item sampling model except that

each student responds to the same randomly sampled set of items. The

classical model is a degenerative form of the item sampling model where
all n; are equal. But in the event that items are all of equal difficulties,

true scores.will be identical, in each item sample, and, of course, these

are identical to the true score in the populatiop. However, if this is

not the case, and students respond to different/ item samples, more variation

s can be e<pecfed to enter into any summary statistics designed to reflect

measurement error.

B .

| So where in these "traditional” test theories is the concept of precision

as ‘I have defined it? Where do the theories spedk to the construction and

calibration of the measurement device? Again, the answer is nowhere. I am not,

?

.4‘
-

STl !
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of course, suggesSting_that items go unrecognized in traditional test
thebries. However, I am suggesting that the item parameters, for ex- '
ample, in the model specified by (11), arethere mostly by default. ‘
Moreover, I'm suggesting that precision, which is indeed gained in the

composite test score, is serendipitious--items are invariably nonparallel

and tests are usually long enough with sufficient variation in item |

T e T TS 318 L S A i R B S A A b 1P bR ) LAY S 180 e 06 P 1 1 @ 8 S s % P58 0 o8 TP 8 485 okt 08 AL A s hmva bl 320 T

d1ff1cu]t1es so that total scores are at 1east pos1t1ve]y and monoton~
ically related to the underlying ability continuum. Put slightly dif-

ferently, I am suggesting that the wrcng theoretical framework for con-

ceptualizating the act of measurement has been used to evaluate what

turns out to be a fairly common and iniuitively sensible approach to
' - {

the measurement of ability.

Consider this ironic ou%cope in terms of classical test theory: dif-

ferences in item difficulties (desirable building blocks for measurement)

are evidence for v1o]at1ng the fundamental assumption of para11e11sm for the

internal consistency form of r;11ab111ty Moreover, such differences automat-

ically put a ceiling on the max1mum‘]eve] of -KR20 (or alpha) due to the

ceiling on phi coefficients when maerna] proportions are not identical. For
these redsoés, we all learned that the "best" possible test was one with
items of near equal difficu]ty and, preferabfy, all at the .5 level to
maximize thé potential for total score variance--all nice ingredients for
norm-referenced applications. Not surprising]y:\j; is under the "ideal"
condition of equal item difficulties that all thre;\xraditigna1 test theory ‘
models are, for practical intents and purposes, ident}tgl.

\

This "ideal" student-item response pattern high]ighté the folly of
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treat{ng jtems as merely short (the shortest) repeated tests. As implied.

above, maximum KR20 obtain when items are at the .5 difficulty level and '
all students either get all items right or wrong. For a k-item test, then,

half the students have a score of k and half have a score of 0. Clearly

1ittle information is obtained when only two decisions can be made.

(Latent trait moge1s, which attack the issue of calibrating test items

directly, can not even utilize "perfect" response vectors since they have

no utility in-pinpointing locations on the latent continuum.) Equally

ironic implications of this "ideal" score matrix occur for validity co-

efficients. _Sée Loevinger, 1954.) It is a rather sad commentary that
"something fishy" about classical test theory was smelled early on by

scholars who continued to propagate the methods:

It may be, if items of graded difficulty levels are
-used, that counting one point for each item correct ‘
js not a proper scoring method. The score assigned !
should rather be a2 best estimate of the difficulty
level reached, analogous to that used in the Binet
test.... Another limitation in the theory here de-
veloped should be pointed out. The criterion of max-

. imizing test variance cannot be pushed to extremes.
Test variance is a maximum if half of the population
makes zero scores, and the other half makes perfect
scores. Such a score distribution is not desirable
for obvious reasons, yet current test theory provides
no rationale for rejecting such a score distribution.
Obviously the "best" test score distribution is one
which accurately reflects the "true" ability distri-
bution in the group, but there is perhaps Tittle hope
of obtaining such a distribution by the current pro-
cedure of assigning a score based upon sheer number
of correct answers. At present the only solution to
such difficulties seems to lie in some type of abso-
lute scaling theory.... (Gulliksen, 1945, pp. 90-91.)

As a final eiamp]e of the ironies inherent in classical models con-

sider the classical test theory notion of a constant standard error of
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measurement for every possible score. Does it make sense that particular

high (or low) scoring students would have the same random error distri-

butions around their true scores as would intermediate scoring students?

At a purely intuitive level this doesn't make much sense at all. The

biromial error model makes it clear that errors are smaller at the ends

of the score distribution and larger towards the center. This makes per-

fect sense if we think_pf sampling items as analogous to sampling balls
from an urn to achieve acéuracx of estimation--blue balls are items an-
swered cpprect]y, red ones are incorrect items, and a student's estimated
true score is the proportion of blue balls obtained when selecting k balls
at random from the urn. \

But it makes no sense if items are conceived as fundamental bpilding
blocks of the measurement process. In this case, "error" ought to become
much more associated with the precision of measurement. In fact, the
error pattern should be the complete reverse of that predicted by the bi-
nom{a] model . Erkcrs would be Tlarger toward the extpemes of the score dis-
tribution and smaller towards the center. At the extremes, we know nothing
about the ability level of persons scoring 0 or k on a k-item test. The
analogy to physical measurement is again instructive. It is equivalent
to selecting that bundle of sticks of appropriate length such that they
can center on the person's height. If the smallest stick is too Tong
(a O-scorer) or the longest stick too short (a 1-scorer), we have failef

to measure the person's he1ght to within the given units of precision.

In sum, it can be said that classical (and c]ass1ca1ﬂ%1ke) test
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theories are good models for assessing the dependability of measuré??

ments whose internal measurement properties are already well understood

or at least accebted as‘given. (Generalizability theory becomes particu-
Tar]y useful in these circumstances as noted previously.) But they are

poor models. for directing and assessing the deveiopment of item-based
measures which, as suggested by the physical measurement analogy, rely upon .
item difficulties as proxies for calibrations on the "ruler." Again,
many achievement tests produce useful results serendipitously for the . __ ./ .

obvious reason that practitioners of classical testing methods sense the

. necessity for including items of varying difficulty. But the reasons

for the eventual presence or absence of items on their tests are the

wrong ones, being rooted in a "theory" of dependability rather than mea-

surement. I will now turn to an illustrative survey of some measurement

e o
2

arka

s which are theoretica]]y oriented in the latter direction.

Cumulative Test Models .
N

for Tack of a better one, I am using the term cumulative to refer to

a rather he¢efo§eneous class of measurementlmodefs which explicitly acknowl-
! edge the measurement function of items as heretoforediscussed. If not already
obvious, the descriptive value of this term will be apparent shortly. A
potpourri of fhese models will be presented in just enough detail to high-
light how they radically differ from classical (and classical-Tike) test
theories in their conceptual approach to the measurement act. All these
cumulative models approach the measurement act directly (usind the items—as—‘
sticks notion) relying on item difficulty variance for precision and cali-
bration and the total scdre(or a function of the total score) as an indicant
8 .

of the ability being measured.

Before beginning this survey, I wish to note a side benefit to using
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tﬁé "items-as-sticks" notion in developing:a measurement rQ1e (i.e., test). .
In 1963, a seminal article by Glazer stimulated the so-called criterion-ref-
erenced testing movement. 'soon thereafter, an important article by Popham
and Husek (1969) }ight1y noted the inappropriateness of norm-oriented classical
test theory methods for handling the development and analysis of criterion-ref-
erenced tests. The literature virtually exploded with attempts to adapt cltass-
ica]'tqgt.theory to fft the requirements of criterion-referenced tests. The
focus of these efforts was quite misdirected. The fundamental issue was not
testing or even purpose of testing; rather, it was an issue of measurement.

**“*""""““The*p;oper“ro¥e—uf”items in a test forces (or should force) the test constructor
to match item content with the cognitive processes to be.assessed. Assuming
a sfngu]ar construct and‘a scalable set of k items having different difficulties,
k + 1 "mastery" levels can be assessed. "Criterion-referenced testing", there-
fore, is simp]y-sensib1e measurement.9 0f course, following sensible measure-
ment, one can‘a]w;ys (a) select a particular mastery level for criterion-ref-

»

erenced decisions or (b) compile group statistics for comparative purposes,

thereby developing norm-referenced test interpretations. —

Guttman's Scalogram Analysis

i

David Walker (1931, 1936, 1940), perhaps the first person to recognize
the value of the doubly ordered raw score matrix, began a series of investi-
gations on the relationship between response pafterns and the resultant shape
of écore distributions. In the course of this inguiry, Walker cdncepr&]izéJ/
the ideal response pattern and attempted td index departures from this pattefn,
a condition he nicknamed "hig" after the term "higgledy-piggledy" to describe
the apparent haphazardness in non-ideal response patterns. But his interest
centered on implications for test score scatter rather than the more profound

implications for measurement itself.

Guttman (1944) reversed this focus and formalized a scaling procedure

[¢]
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for assessing the degree to which items conformed to the ideal response
pattern. Figure 3a presents an example of an ideal cumulative response

" pattern for 20 students responding to five items. However, that this

js an ideal pattern is not immediéte]y obvious until the score matrix

s arranged in rank order on both student scores and item difficulties. One
such convienent "double sorting" of the score matrix orders sfudents

from highest to lowest scores and items from easiest to most difficult.

2 AN I a5 e Tt | TR i A AT el

inheként in the unsorted data as presented in Figure 3a. Figure 4
presents the same score distribution, but this time there are some
"errors," i.e., student-item responses which do not fit the ideal
pattern. For example, student 8 should have answered item 1 correctly
and item 5 incorrectly, thereby contributing two student-item response
- errors to the total 20x5 (i.e., nk) possible student-item responses.
Finally, Figure 5 depicts yet again the same score distribution but
with many errors resulting in a very pook cumulative pattern.

To index tbe‘degree of cumulativeness present in the pattern,
Guttman used a déterministic approach. A1l deviations (e) from the
ideal pattern are errors, i.e., the approach makes no allowance for

probable deviations. An obvious index then is the proportion of non-

errors in the entire response matrix (1-e/nk). Guttman named this

index the coefficient of reproducibility (REP) insofar as it reflected

the extent to which the response pattern could be perfectly reproduced

from thq)studeht scores or item difficulties. Thus,

REP = 1- - (19)

€
nk
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Figuré 3a

Unsorted Cumulative Response Pattern
for avHypothetical Ideal Score Matrix

TTEMS
3 .2 5 1 4
72 0 1 0 1~ 0
19 0 0 0 0 0
16 0 0 .0 1 0
R 0 1 0 1 0
........ sl o a0
15 0 1 0 1 0
2 1 1 1 1 1
13 0 1 0 1 0
31 1 1 0 1 1
9 1 1 0 1 0
ol ] 1 1 1 1 1
- .
= 6 1 1 0 1 0
L
al 20 0 0 0 0 0
-
18 0 1 0 1 0
(7]
10 1 1 0 1 0
17 0 0 0 1 0
4 1 10 1 1
8 1 1 0 1 0
18 0 0 0 1 0
7 1 1 0 1 0
10 15 2 18 . 5
p,= .50 .75 .10 .90 .28

X
2

0
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Figure 3b

Sorted Cumulative Response Pattern
for a Hypothethical Ideal Score Matrix
(Rep = 1.00; CS = 1.00; o = .76) -

ITEMS

'

(7]
"l 10 1 1 1 - 0 0 3
z £y
= 1 1 0 0 0 2
=12 1 1 0 0 0 2
F—.
13 1 1 0 0 0 2
14 1 1 0 0 0 2
15 1 1 0 0 0 2
16 1 0 0 0 0 1
17 1 0, O 0 0 1
18 1 Y 0 0 0 1
19 0 0 0 0 0 0
20 0 0 0 0 0 0
18 15 10 5 2
Py = 90 .75 50 25 10 '
b .
' —
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Figure 4

Moderately Cumulative Response Pattern

(Rep = .86; CS = .63; a = .57)
ITEMS

1 2 3 q 5 _

1 1 1 1

1 1 1 1 1

1 1 1 1 0

0 1 1 1 1

1 0 1 1 1

1 1 1 0 0

0 1 1 1 0

0 1 1 0 1

1 1 1 0 0

1 0 1 1 0

1 0 0 1 0

1 3 0 0 0

1 1 0 0 0

1 0 0 1 0
I 1 0 0 0

1\\ 0 0 0 0

1 N0 0 0 0

N

1 "0 0 0 0

0 0 0 0 0

0 0 0 0 0
15 N 10 9 5
75 .55 .50 .45 .25
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%%' ) Figure 5

Poor Cumulative Response Pattern
(Rep = .74; €S = .46; o = .49)

ITEMS
1 2 3 4 5 X
‘ o 1 1 1 1 1 5 é ]
2 1 1 1 1 1 5
3 1 1 1 1 0 4
4 1 1 0 1 1 4 )
5 0 1 1 1 1 4
6 1 0 1 1 0 3
7 0 0 1 1 1 3
8 1 0 1 0 1 3
9 1 1 1 0 0 3 3
10 0 1 1 1 0 3
n 1 0 0 1 0 2

STUDENTS
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But REP can never be smaller than the average of theobserved item diffﬁcu]ties’
(pi) or easinesses (qi=1—pi), whichever are greatest. That is: -

Min(REP) = tMax(p; ;) ~' (20)
k.

The degree of improvement (IMP) over minimum reproducibility is,

therefore,
IMP = REP-Min (REP) (21)
wwﬂw“km“".“AMOPEOVEY‘, ;;é‘—r;ax1mm p—‘OSSiB]e 'il.np;"oveme-l;;w;;“mm—‘””WWm.MW“IM"M“M“. o
Max(IMP) = 1-Min(REF) (22)

Thus, a more realistic appraisal of the degree to which items scale,
above that expected by the margina1 results alone, can be seen in the
ratio of IMP to Max(IMP). Denoted the coefficient of scalability (cS)

by Menzel (1967 ), this index can be written as follows:

e = REP=Min(REP) : (23)
I-Min(REP)

It haéyusually beern recommendéd that reasonable scalability requires
REP> .9 and CS> .6. The score hatrices in Figures 3a, 4 and 5 depict
what are ideally, moderately and weakly cumulative response patterns.
These descriptors are clearly reflected in the values of REP and CS

accompanying each score matrix.

There are pfobab1y three basic reasons why Guttman scaling recefved
little favor in the achfevement testing arena. First, for reasonably
homogenious objective domains, it is difficu]t to write achievement {tems
which scale well. In fact, Guttman devised the scalogram procedﬁre for

J
attitude measurement, where it is often easier to write items with




o2

distinctly different affective magnitudes (item ndifficulties") cover-
ing the same essential domain. ,Secon;, Guttman made unrealistic E]aims
regarding the power ofhscaTOgram ana]ysi§~to-test unidimensionality,

thereby opening up the procedure to a barrage uf criticism. (See, for

example, Festinger, 1947'and Loevenger, 1948.) In line with the dis-

cussion of unidimensionality earlier in this monograph, Guttman would

§

hdve treaded firmer ground were he to have simply suggested that a
scalable set of items is necessary but not sufficient evidence that .

a set of items measures the same thing to within reasonable evidence

of .content (and/or construct) validity. Third, and probab]y*mo§tacritica1,

the model was deterministic and offered no statistical (i.e., ﬁrobabile
istic) tests of fit. (See Torgerson, 1958.)

But no criticism was ever directed at the most important notion be-
hind Guttman's approach, namely, the measurement role of items as: in
essence, calibrations on a "yardstick." The approximation to.the idea]e;
pattern (Figure 3b) would most 1ikely be the acknowledged goal df most
acﬁievement test Eonsxructoré. Yet, inste%d of EXQending considerable
effort in mapping the cognitive consequences of instructional units
and writing, testing, modifying and rewriting relevant items that do
begin to show nice cumulative properties, test constructors have been
content to build tests on the classical test theory principle of re-
dundancy, i.e., kepeated“measurements to realize reliability (as internal.

consistency).

n . —
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As an intereSting“aside ngtg, even the deterministic nature of

- Guttman scaling was rendered a non-issue by a number of writers. Perhaps
the most ingenious approach was based upon Cdx's'(1954) analysis of
covariance model for éqmu]atiye répeated ‘measuremnents (see Ma;we11,

1959 and Ten Houten, 1969). Other techﬁiques were investigated by
Goodman (1959), Sagi (1959) and Schuessler (1961). The point of this ,
nofe ds Sfmp]y that atténtion‘needs to be‘redirected towaf&s the under-
1ying principles of measurement and away from the Qorry of more or less
‘sensiézxe statistical indicators--not that the latter are'unimportant,

but that the formerare much more so.

Loevinger's Homogeneity Analysis

In her 1947 monograph, Jane Ldeyinger delivered what I believe to
be among the best énd most provocative critiques of classical test
;heony; and she followed up with an equally provocative critique of
jtem sampling theory in 1965. To be sure, some of Loevinger's criti-
cisms were a bit overstated, particularly her judgment that tpe axioms
Aof<c1assica1:fe§t theory were circular (see Novick, 1966). But gen;
erally, her view regarding the inappropriateness of treating items
as repeated measurements and her switch in focus from re]iabi]ity‘to
constructing cumulative scales répresents the fundamental Gontribution.

Like Guttman, Loevinger's approach is based upon deviations from

the ideal response pattern. Unlike REP (and its,derivatives),'however,'

her homogeneity index (H) reflects these discrepancies in terms of
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maximum expectations‘given the difficulty level of the items. Assuming

jtems are arranged in ascending order of difficulty, then for any two

jtems i and j the usual four-fold classification table obtains: Qw
Item j ' :
) 1 0 .
‘ 1 a b a+b ' p.=(atb)/n
Item i . 1

0 c I d | c+d q1.=(c+d)/nr
‘a+c b+d> n=a+b+c+d
P q.
IIJ IIJ 1

(a+c)/n (b+d)/n

a, b, c, and d are the number of students in each of the respective

possible score patterns. Since we have arranged’ the data assuming iteﬁ
.

i is easier than j, atb must be greater than a+c; in proportion terms,

-

p1'> pj:

Ideally, no one answering theLmore difficult item correctly would
k |

answer the easier item incorrect]y.‘ The ideal four-fold classification

table would then look like this: . !
+ ’ ' Item J
§ ‘ 1 0
1 a b a+b
Item i
0 0 d d
| _
a b+d n
{‘
7

S : |
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But in the actual testing process, "errors" do occur and ¢, the number
of students getting the more difficult item right but the easier item
wrong, is often not zero. These are the deviations from the ideal
scale types in Figdre 4 and 5.

Loevinger’sbindex of "homogeneity" focuses just on the outcomes a and
c, that is on the easier item's sco?ing pattern éor thoée students
answefﬁng the more,difficu1t item correct]}v(heavi]y)out1ined column

in above schematics.) In other words, the index is based upon the

conditional prdbabi]itxfpilj of answering item i correctly given that

item j is answered correctly. In the general case, this probability is
given by the number of students a who answered both items correctly

divided by the total number o?_students a+c who_answered item j correctly:

Ps i =
ili atc : (24)
Pj

where p{j is simply the proportional eduivalent of a, viz., a/n, which

is the probability of answerjng both items i and j correctly. In the
ideal cese, perfectly homogenious items (like in Figure 3b), c=0 and
pi[j=1" In the perfectly heterogenious case, we would éipect items to

function completely independently, i.e., pij=pipj’ in which Case

piij=pi by (24) above. An index -of homogeneity between the two items

i and j can then be formed as follows: "~

’ observed improvement in p.,. over
H.. = that expected under perfe&LJheterogeneity
1 maximum possible such improvement if
jtems were perfectly homogenious

1-p, N €5)




In form and intent, this coefficient is analogous to the coefficient
of scalability (23) proposed for Guttman scaling. But Hij has a number
of further properties. Among the more interesting is the following:

= %45 '
Hyg= —3 . (26)

wheré'¢ij is the ordinary Pearson product-moment correlation between tvio

jtems which, since the items are binary, is a1sg the fourfglgﬂpgjntfcoﬁf//
relation computed as: . ,,~/f'””'*aizﬂw
655 =_Pid " PiP] (27) ,
Pi%iP39;

But ¢1j cannot réach unity unless the marginals P; and P; afe equal,
i.e., unless the:ipem difficulties are equal. This is gxect]y the
circumgtance unde( which the.twd items are useless for purposes of
precision, i.e., they rep]icage éhe\s§me cg]ibration information

rafher than add decision points to the scale. And bf course this is
exactly the condition most suited for classical tesf theory, a theory of
accuracy . ’

However, we can. "correct” ¢ij by dividing it By the maximum possible

value it can assume in the case of unequal p; and pj_ That is

¥

Max(¢u) = PJ_ PiP; (28)
piqiquj
‘and thus
%5 = Pij = PiP; (29) -
Max(¢ij) pj - pipj. ) )

72
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1

~ Upon dividing both numerator and denominator of (29) by P;> the equiv-

alency given by (26) is verified.
But the result is more than algebraic. The maximum ¢ij is obtained

when all the students answering item j correctly also answer item i
correctly, i.e., when pij=pj._»Iﬁis, of course, is the ideal cumulative
response pattern shown in the above schematic. Thus, ¢ij/Max(¢ij) is
really measuring the extent to which this ideal is obtained and ranges
from O toll accordingly. Unfortunately, this index suffers a bit from
the fact that it can also be 1 in value for items gf equal difficulties
when the b cell is also zero. Even in the extreme case of Figure 6,
the overall index (Ht) of homogeneity (see be}ow) is unity. Guttman '
indices suffer from the same problem. In effect, the scaling indices
being presented here are necessary but not sufficient indicators of
the cumulative nature of the test items. (See footnote 8.) We must
also, therefore, have some indication of item difficulty spread over
thS ability range of interest.

. To complete the discussigh of Loevingeﬁ's'approach, we note that
a weighted average of Hij can be formed for all item pairs i and j (such
that pi>pj) yielding an overall index of test homogeneity (H.). fheI
most straightforward approach to constructing Ht is to reconsider
equation (29) which was férmed'aé a ratio of equations (27) and (28).
Since the item variances in the denominators of (27) and (28) cancelled
out, (29) is, in effect, the ratio of the observed covariance of items.
i‘ahd jbto the maximum~ppssib]e covariance given the P; and pj. An
overaldl index can then bé\formed as a ratio of the sum of the k(k-1)/2

unique observed covarianges to the sum of the corresponding k(k-1)/2
1

maximum covariances:
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Figure 6 |

A Degenerate Case:

The Perfect Classical Test Response Pattern
(Rep=1; CS =1; a=1)

ITENS
1 2 3 4 5 X
@ 1 1 1 1 1 1 5
‘ 2 1 1 1 1 1 5 —
3 1 1 1 1T Y 5
4 1 1 1 1 1 5
5 1 1 1 1 1 5
6 1 1 1 1 1 5
7 1 1 1 1 1 5
o 8 1 o1 1 5
oo 1 1 1 A 1 5
=10 1 1 1 1 1 5
it I B 0 0 c 0 | O ;/
v

12 0 0 0 0 0 0
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where Covij denotes the covariance between items i and j. Some algebraic

manipulation of (30) will verify that it can also be written as

I L p.q. H..
Ht= 'i?{j 31 1 s
L N
i.e., H, is a weighted (by qui) average of Hij = ¢1j/ Max(¢1j). This

‘makes intuitive sense since qui is the expected proportion of errors

in the completely heterogeneous (non-cumulative) case.

It should be cleadr that Ht is an average inter—item‘statistic‘gssessv
ing the degree to which all possible oraered item pairs are homogeneous
(in the cumu]atng sense) on the average. Thus, it does not increase
merely as a function of increased number of itemsvas does the internal
consistency coefficient o in traditional test theory. Thjs is as it
sheuld be since Ht‘is intended to index the cumulative structure of items
while « is aimed at assessing the reliability of repeated item measurements.

Ironically, Horst (1953), capitalizing on the seductivé]y\simp]e re-
lationship between Ht and the intrac]ass~reliability coefficient of class-
jcal test theory, has proposed "blowing up" H, by a factor of/k'using
the Spearman-Brown prophecy formula to correct the cei]ing/g;fect prob-
lem of unequal item difficulties in classical test theory. To his cfedit,

Horst is among the few test theorists who has recognized conceptual

7.,.-
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differences between reliability and homogeneity and devoted ample space

to Loevinger's work in his book on measurement theory (Horst, 1966).-

But although I éan relate to the intended use of the modification

offered by Horst, the modification once again confuses fundamental

measurement issues by commingling the concepts of precision and aceuracy.
Consider, first, the specifics of the modification. The intraclass

re]iabi1iﬁy (rii) in classical test theory is the reliability of the

average single-item test. It can be shown that by adjusting ris upwards

by a factor of k using the classical Spearman-Brown formula, we end(

up with the KR20 (or o) formula for reliability at the total test

Tevel. Noting that ri; can be defined as the ratio of the average inter-

jtem covariance to the average item variance, i.e.,:

r.. = 'i3%i%j - Covij (32)

Ay ar.
1 v 1

the relationship given in equation (10) leads directly to the Spearman-

. N -~
Brown "correction” as follows:

KR20 = k rig (33)

1+ (k—l)rii

Now. the maximum possible r

34 given the disparities in item difficulties

is

v
/' Max(r..) = Max(Covys]

J
11 — {
Var, (34)

If we correct re; in the usual manner, it is obvious that

COoV; -
r.. 3 ij B -
11 Ht A (35)

Max(rii) Max(Covij)
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The suggested -modification by Hbrsffflherefore, is to substitute the
corrected ris i.e., Ht’ in ‘equation (33), thereby making it possible

for KR20 to reach unity even when item difficulties are unequal.
k Ht
-

T+ (k-1)H

Consider, second, the implication of this formulé. A test can be

. Corrected KR20 = (36)

perfectiy homogeneous by adding an‘infinitebnumber of mostly heterogeneous
jtems so long as they are positive{y correlated. Now this seems reasonable
for achieving inCreasiné]y accurate measurements; but it does not neces-
sarily lead to incréased‘precision and a more scalable set of items.
Suppose, fo; example, the test is doubled in length by adding k para]]e]u ’
jtems, i.e., items that are equal in difficulty, bne;for—one, to those in
the original test and that scale identically to those'in-theborigina1 test.
We now have twice the test informatioh at each ability level but still

the same number of ability levels represented in the test. Suppose,’
again, that the new items are equally scalable but have difficulty levels
between those of the original items. We now have the same information

at each ability level but twice the number of ability levels that can

be assessed. Formulas such as (36)/"blow-up" the index indiscriminately
thereby conflaéing‘the issues of accuracy and precision.

Horst (1966) makes an effort to distinguish :e1iability and homo-
geneity by noting that reliable items are a neééégary but not sufficient
cohdition for high Ht' ‘Thus, high Ht is, in part a function of reliability.
NoQ this is true for reliability at the item level. But it is not trug'
for reliability (as internal consistency) at the test level. Again, I
am trying here to‘clearly separate the prgcision obtained through cali-

/
brating a homogeneous or unidimensional test from the accuracy of test.

¥
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Bentler's Monotonicity Analysis

I $nc1ude'a discussion of Bentler's (1971) appraach here primarily
to emphasize that multidimensionality is not an intractable issue when
measurement is conceived and operationalized as a cumulative scaling pro-
cess. Thus far I have avoided the issue of empirical dimensionality
suggesting, instead, that a scalable or homogéneous set of itéms plus
reasonable evidence of content validity is a necessary but not sufficient
condition for unidimensionality. Although I (and others) often use the
terms unidimensional and homogeneous synonymously, it should be understood

‘that the former is not an automatic consequence of the latter.

Preferrjng the term monotonic (instead df cumulative), Benfﬁer
quite cleverly recognized that Yule's Y coefficient ( a simple function
of the more familiar Yule's Q coefficient) for association in a four-fold
table (see Yule; 1912) possessed none of the drawbacks of

¢ or ¢/¢max when subjected to an ordinary principal components factor

analysis. For any two items i and j, this index, renamed the monotonicity
coefficient by Bentler since he developed it in a more general form,

is.given as follows:

bc - ad
bc + ad + 2 abcd

<
"
@
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where a, b, ¢ and d are as given in the four-fold table 1ayout in the
previous section. The nice thihg about Yule's association measure is
that it becomes 1 (or -1) only when one (or more) cells are empty.
These inE]ude exactly those four—fo]d response patterns of cumulative
scales; and a principal components factor analysis of the inter-item
m-matrix will recover two or more cumulative scales embedded in a set
of items.

| As an index of'homogenity, m is very ﬁimi1ar to Hij' And, like
 Leringer, Bentler proposes the average of all k(k - 1)/2 jnter—item
monotonicity coefficiehts, m, as an overall measure of inter-item
homogeneity. But then, like Horst, Bentler bgcomes concerned with the
Tength of the test not being represented in tﬁe index. Thus, he pro-
?osed the same Spearman—Brown_transformation of m for a final, overall

measure of the test's homogeneity (h),
9

h = km , (38)
1+ (k~-1m

and, in my view, falls into the same trap of mixing up fundamentally

distinct meastirement issues. «

79.
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Sato's Student-Problem (S-P) Matrix Analysis

| Sato (1980) developed yet another means for indexing departures

from the perfect Guttman or cumulative scéle. But this time the notion
seems to have caught-on. It is difficult to tell at this time whether
it is the novelty of the procedure (and its more sophistiéated mathe-
matical basis) or whether\more methodologists have begun to internalize
the need to réESHE;BEGETﬁze the proper measurement role of items. In 4
any case, Sato's contribution reiterates the appropriate focus for un-
derstanding the-measurement act, viz., the doubly ordered student-by-
item (problem) matrix of raw responses (e.g., Figures 3b-5).

Interestingly, Sato's approach, unlike those discussed previously,

utilizes a mathematical model of the ideal non-cumulative response pat-

tern. An‘indé& of fit, then, is based on the extent of observed response
pattern departure from the perfectly heterogeneous model. Specifically,
ahy ordered student-by-problem (item) matrix can be partitioned into °
sections corresponding to the expected ideal cumulative patterns based
on either the student scores, the S-curve, or problem scores (item diffi-
cu]fies), the P-curve.

Figure 7 depicts the process of analyzing the student-problem matrix

in this manner. Figure 7 is simply Figure 4 again, but this time the

cumulative student and problem score distributions are presented, separately,

and superimposed,on the S-P matrix itseif. As an exercise, superimpose

¥
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the S-curves and P-curves appropriate for the matrices in Figures 3b-and 5. You
will discover that in the ideal case (Figure 3b) the S- and P-curves are coin-
“cident; and in the case of 'poo cumulative response pattern (Figure 5), the’

curves are quite far apart and much more so that they are for the moderately’

3
I

cumulative pattern exhibited here (and in Figure 4). ‘ -
Thus, the area between the S- and P-curves--proportional to the nymber of )
student - 1tem responses between the curves--ref]ects the degree ~of departure‘from
-‘

the ideal cumulative response pattern. (In genera] the number of student-it

responses between the S- and P-curves is close to, but is not/jynt’1ona1]y re-

. ""AJ»"' -‘)g'—_‘

1ated to, the total number of Guttman errors, viz., tw1ce//he number of 0's
above, or 1l's, below, the S-curve. ) To construgt/an 1ndex s1m11ar to-the co- ég
. efficient of sca]ah111ty for Guttman sca]es;1the maximum - poss1b]e area between ‘
the S- and P-curves must be calculated for the perfectly heterogeneous student -
problem response matrix of the same dimensions and mean performan;e. Sato
models the idea]’heterogeneous matrix by assuming simple binomia][samp11ng for
problems and students. Thus, the .cumulative binomiaT‘distributions with
parameters k and P and parameters n and p model the S; and f-Curves respec- N
tively. Denoting the areas between the observed and binomial S- and P-curves °
as A(n,k,p) and AB(n,k,p) respective]y;ASato's disparity boefficient is given

as follows:

A(n,k,p) . ' —

) Ag(m-k-P) | (39)
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This 1ndex reacheé 1 in the case of perfect heterogeneity and 0 in
the case of a perfect cumulative (homogeneous) response pattern. It there-
fore varies inversely {(and I expect quite highly) with the other indices
of homogeneity discussed in this section. Moreover, Sato (1980) defines

analogous coefficients at the individual student and problem levels (called

caution indices) which serve to highlight those students and items which

depart considerab]yafrom jdeal expectations. Loevinger (1947} developed

a similar index for items whereas Guttman relied exclusively o visual in-
sbection of the response matrix. In the final aﬁgaysis, the increasing
popularity of Sato's approach is most likely due £5 the emphasis placed on
ﬁhe raw score matrix, with handy indices (for spotting aberrant cases) of
Qreaf practical utility for the ordinafy classroom teacher. For recent
developments in‘the Ui S., see Tatsuoka (1978), McArthur (1981), Harnisch
and Linn (1981), and Miller (1981). (See also the chapter by McArthur

in this monograph.)

Rasch Measurement: A Latent Trait Model

Latent trait theory, or item response theory (Lord, 1980), refers

~ to a whole class of statistical measurement models based on the same fun-

damental conception of the measurement act guiding the cumulative models
surveyed thus far. However, latent trait models makexgmportant allowances
for those "minor" points we glossed over while drawing:%he analogy to the
physical sciences. Spgcifica]iy, these were the points relating to the

variability of both the item difficulty positions as "hash marks" on %Q

the "ruler" and the underlying ability continuum itself, as one moves

Sy
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from one "ruler" to the next. For ou; pj:goses here; wetwill review
only the simp]esf of ther1atenf‘§r91t mgde]s, viz,, the 1—pafaheter
mode], developed three décades agokby Géorg'Rasch. A number of good
presentations and/or reviews Qf latent trait mode]s generally, and the
Rasch model in particular, currently exist. Some exémp}es are: Rasch®
(1980 reprint of 1960 edition); Wright and Stone (1979); Hambleton and

Cook (1977; see that entire issue of the Journal of Educational Mea-

ment); Lord (1980); and Traub and Wolfe (1981). .

¢

The Rasch model (and Tatent trait models general]y) assumes a sﬁng]e (
invariant ability paramgter and specifies a probability function over‘
the entire 0-1 range that any item will be answeredAcorrect1y by students
of a given ability. Specifically, Rasch first approached ﬁhé problem
by imagining independent person and item parameters reflecting, respect-
jvely, ability and difficulty (or, its reciprocal, easiness). - Second,
ne envisioned the same cumulative response pattern a; the ideal outcome
when persons with varying abilities encounter items of varying di%ficu]ties.
B;t he modeled the process probabilistically, not only to avoid thé deter-

minism of previous approaches, but to establish an invariant measurement

Asca]e -- so long as the model fits the empirical reality of the test data
in question. |

The model he selected is a-simple odds ratio, i.e., the odds (G;i)
of student s with ability As correctly answering item 1 with difficulty
Di are given as

L o.="s (40)
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Instead of’ﬁéds, we can use the more convenient 0-1 scale of probability.

If‘Psi 1s the probability of student s answering item i correctly, tnen, by

definition, Psi = B;i/(1+d;1). Thus equation (40) can be rewritten as

(41)

It should be clear that, as hypothesized, the model predicts a lower chance

of success for a student with lower ability eﬁcountering a reiatively more

difficult item, a higher chance of sutcess for a student of higher ability

encountering a relatively Iess difficult item, and a- 50-50 chance of success

when the %b1]1ty of\the student and the d1ff1cu]ty of the item are jdentical.
\ . ¢

These are invariant properties of the person and the item and are presumed

to be independent of each other as well as of the other abilities of the

persons being measured and the other difficulties of items doing the mea-

suring. Again, this specific objactivity (as Rasch calls it) is operational

only to the extent thac these presumptions fit the reality of the data.

Equation (40) becomes computaticnally more tractable as a simple
linear function by taking the logarithm of both sides, i.e.,

log (8_;) = Tog (A) - Tog (D;) (42) .

el .

Likewise, equation (41) can be so converted; but it is usually expressed

in exponential form using the natural base e and the substituted parameters
a S,

- _ s i
= Jog (AS) and §; = ]oge (Di)' In other words, e ~ = A and e ' = D,

]

and equation (41) becomes the so-called logistic function

5o
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P .= e3> ! (43)

\ o
Of "course, the same logic f?‘embedded in (43) as was in (41), except now
the interplay of person encountering item is reflected in the difference
between the transformed.ability parameter o and -difficulty parameter

8. When equation (43). is grafihed for all possible values of this dif-

ference, i.e., for Egj = O ~ ai where ~=< Egi <t+w, the so-called re-

s
sponse characteristic curve results (see Figure 8). This represents the

simplest Togistic model, often called the l-parameter model, since Psi

is really only dependent upon the single discrepancy Eei Alternatively,

for fixed difficulties 8, or abilities a_, the ogive in Figure 8 repre-

S

sents equally well the item characteristic or person characteristic curves

respectively. , - ) _ '
‘ The ratHer elegant simplicity of the Rasch technique for scaling is
realized £hrough this important property of the model: the student raw
scores (rs) and observed item diff{éu}ties (pi) are sufficient data from
which to derive the best esggmates of o and 8, respectively. In effect,
the double ordering of the student-by-~item raw score matrix best estimates

the ordrring that would occur were we to know the actual «. and 8. Thus,

s
persons wifh the same raw score r from the same set of items will receive
the same ability estimate a..

To estimate and o and &, therefore, the n x k raw score matrix is
merely collapsed row-wise such that rows now constitute the k+l possible raw

scores and cell entries are the proportions of persons in the rth raw score

group correctly answering the ith item. If the index r is substituted for the

e ot it v ettt




Figure 8

Item/Person Characteristic Curve
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index s in equation (43), it should be clear from the above property that

these cell proportions (ﬁri) zre all estimates of their corresponding P ..
In general, then, there are k(k+1) equations of the form

a>~6

e ¥ 1
ri a -6
1+eY‘ 1

o B

\

with only 2k+1 uhknown values of the « and 6}0 (In practice, no information

is, provided by raw scores classes r = 0 or klor by observed item difficulties
p =‘O or 1 and these rows and/or co]umns,vshoﬁld they occur, are eliminated
for purposes of analysis.)
There are several éﬁproaches to the solution of these equations and
testing the fit of the results to what the mode] predicts. ({See references
. poted previously.) The important point for our argument here, however, is
that this model again conforms to the measurement of a property as we ordinarily
conceive of if. Moreover, when this particular model fits the data reason-
ably well, the parameter estimates of a andeare reasonably independent of
the particular ability and difficulty levels of specific studentand item
samples, thereby‘prqyiding viab]é approaches to normal]y‘thorny testing
problems such as test equating, item banking, tailored testing, and so forth.
Fina]iy, it is ihteresting to note that for each person's ability estimate,
there exists-a so-cg]]edﬂst@ndard error estimate. But the only thing this
estimate has in common with the standard error in traditional test -theories
is.its name. The latent trait standard error is really based upon an infor-

\
mation function that reflects the level of precision at the various ability

calibrations. It bears no relationship whatsover to any noticn of item/test
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rep]iéatior, j.e., accuracy (or dependabi]ﬁty). Thus, the latent trait
standard error is an index of precision and behaves accordingly, i.e.,
it is larger for ability estimates towards the extremes and lower for

ability estimates towards the center of the item difficulty range.

Summary

To summarize the foregoing view and review, test theoreticians and
practitioners must carefully distinguish their model of measurement from their

model of the dependability of measurements. The former refers to the con-

cept of precision that is applied in the construction of tests. The

latter refers to the concept of accuracy that is applied to the resuit
of testing under specified conditions of use. Items play a central role
in measurement models; in models for dependability, they are of incidental
jmportance insofar as the accuracy of estimated ability measurements is

of primary importance. Clearly, truly useful test theories necessarily

require both measurement and dependability models.

Classical (and classical-like) test theories are redlly models for
the dependability of measurements. They are gon for assessing the ac-
curacy of the results of a testing process when the process is conceived °
as one (or several) of a great many (often infinite) measurement attempts.
When earh of the repeated measurements is conceived as a replicate (per—~
fectly parallel) measure, we have classical test theory as originally
developed. When the measurements are conceived as a random sample from

a domain of interest (i.e., randomly parallel measures;, we have the

item sempling versions of classical test theory. At the core of all of

8y
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these theories, however, is the concept of repeated measurements. When-

) :
~ever the results of behavioral assessments can be so conceived, classical

test theories, in particular generalizability theory, enjoy a wide range

of application. (See the recent review by Shavelson and Webb, 1981.)

But these test theories "dig their own grave" when they attempt to -
translate repeated measurements concepts to the internal structure of
the test itself. Recasting items jnto the role of strictly parallel (or
randomly parallel)} measurements gﬁn't help but give rise to "test construc-
tion" procedures based on maximizing inter-item relationships.- This pro- v
cedure automatically eliminates items reflecting abi]fty at ?he upper and
lower ends of the "ruler." Thus, empirical evidence for internal consis-
tency (in the reliability sense) cr homogeneity/unidimensionality (in the
construct‘Validity sense) is bai?d qgon the wrong covaricance structure.

In constrast, measurement models attack the issue of test construction
directly. They assume a singular construct from the start (re]ying‘prim—
arily dpon content validation) and proceed to develop items of varying
difficu]éies analogous to hash marks on a ruter. To the extent that the,
set of items fits the cumulative response pattern expectation, we have
evidence (necessary, but not sufficient) that our measurement goal h;s
been achieved. Once satisfactorily constructed, it is quite appropriate
fhat the instrument be subject to all relevant forms of dependability and

validity procedures under the conditions for use in actual practice.

These several ingredients comprise a complete test theory.

14
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Moreover, it show]d bé possib]efto incorporate dependability at the item
level as well. The'schematié in Figure 9 portrays the data box necessary
to sort out -- at least in theory -- the contrasts between™test precision
and both item and test accuracy. Vertical slices of the data box contain
the data- necessary to assess the accurac, of items at each difficulty Tevel
for all ability levels. HorizontaT s]iceé contain the data necessary to
test the scalability of items representing the difficulty levels for each
replication. Cross slices could be used to assess the accuracy of items
at the various difficulty levels holding ability constant. Collapsing tne
data box along the dif%icu]ty dimension produces the data'matrix necessary
for assessing éccuracy at the test level. Of course, generafizability facets

. could be crossed or nested with the repeated measurement trials to assess
accuracy (dependability) under different conditions. The compT&té empirical
suggestion of Figure 9 may be gquite intractab]e'froﬁ'an operational view-
point, although, for some highly specifiable items domains (e.g., arithmetic
fundamentals) on which ability varies\systematica11y with other measurable
examinee characteristics (e.g., age), it may not be too far-fetched.

In conclusion, classical test theory has probably enjoyed a long life
not only because of psychological well-being fhrough cognitive dissonance
reduction, but because tests have never really been developed withoﬁt vari-
ation in item difficulties. It is time now that we construct tests with
varying item difficulties by design——not-by happenstance--and use item ////
analysis techniques that correspond to an appropriate'theorj)of measurement .
Moreover, it is fitting that this view‘forCes,upon us an issue of perhaps

even greater importance, namely, the correspondence of item structure with

RIC = | \
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Figure 9

A Model for Contrasting Accuracy
with Precision and Calibrating a Test
of a Singular Achievement, Construct

Item Difficulty




Al Rt e i e S R e e TR e T T

G e ey

- 2.66 -

the cognitive process to be assessed. (See, for examp]g, the arguments
recently advanced by Glaser, 1981.) It may well be that the simplistic
'Jtiohs of dichotomous responses (right-wrong) to muitiple choice or
true-false items are unrealistic 1ndicators of the cognitive processes
underlying thevabi1itie§ we try to measure. Different measurement models
from those outliined he}g may offer more realistic solutions. (For example,
see the recent latent class approaches such as Wilcox's (1981) answer-

until-correct scheme.)

/N
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Footnotes

I will use the term "traditional" to refer to classical and classical-
like test theories, a distinction that will be clearer in the sequel.

I have chosen Spearman's (1910) work, apparently inspired in 1908 by
G. Udny Yule (see Yule, 1922), to mark the beginning date for classi-
cal test theory.

It is important to note at the outset that I do not intend to extol
any one notion of what it means to measure achievement. Rather, I

wish to explicate a popular intuitive notion of measurement and the
extent to which it is compatible with existing measurement theories.

In general, I prefer the term”"dependabi1ity" to the older term "re-

liability." As used ingeneralizability theory (Cronbach, et al.,
1972), dependability denotes reliability under specified conditions
of use. At times throughout' this report, hawever, I will use the

tern: "reliability" to facilitate the discussion of traditionat test

theory concepts.

I am using the term "difficulty” here more in a parametr1c sense
than as a synonym for observed p-values.

The analogy could bé improved upon in this regard by imagining the
sticks to be subject to increases or decreases in length as a function
of various and sundry effects (some random and some systematic) due

to all aspects of the measurement context. This is a less sadistic
equivalent of Lumsden's (1976) flogging wall test.

Two classical test theory frameworks are in general use. One arises
out of. the definition of error as proposed originally by Spearman
(1910). The other arises out of a definition of true scores as pro-
posad originally by Brown (1910) and elaborated by Kelley (1924).

The former approach is presented here since it's simpler. A1l deriv-
ations end up being the same so that it is a purely academic matter
which approach is "better."  See Gulliksen's (1950) seminal volume

on classical test theory and the good historical overview by Tryon

(1957). /

. ! .
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Footnotes {continued)

1

An important caveat should be stated here: Except for the latent
trait models, the illustrations I have selected do not in and of
themselves provide sufficient information for calfbrating items
and estimating precision. Nevertheless, they are useful both
historically and heuristically for lunderscoring the point of this
discussion, viz., the contrast between dependab111ty and measure-
ment. . |

I am using the phrase "criterion-referenced testing" in the more pro-
found sense rather than simpiy as a brocedure for assessing a cri-
terion level of performance. The criterion is, rather, the content
and thé attempted isomorphism between the content and the measurement
rule. To quote Glaser (1963): "Criterion-referénced measures in-
dicate the content of the behavioral Yepertory, and the correspondence
between what an individual does and the underlying continuum of
achievement.”" (p. 520)

Although useful for expository purposeé here, this is not really the

best procedure for estimating « and 8. (See the chapter by Choppin
in this monograph.) 1

9,
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ANALYSIS OF PATTERNS: THE S-P TECHNIQUE

\ David McArthur
Center for the Study of Evaluation, UCLA

Defini}jon of the model. A system of analyzing patterns of

student responses called Student-Problem sggre tabie ané]ysis has been
developed over the last decade by a group of educational researchers

in Japan (Sato, 1974, 1975, 1980, 1981a, 1981b; Sato and Kurata, 1977; ;
Kurata and Sato, i981; Sato, Takeya, Kurata, Morimoto and Chimura,
1981). While the mathematics associated with derivative indices in

this system are relatively complex, the S-P system itself is

predicated on a simple reconfiguring of test scores. Rather similar

~
analyses of student performance on educational tests can be found in

the profeséionaT 1iteraturé of a half-century ago, but recent

. developments by Sato and colleagues represent significant improvements
( )

both in ccncept and execution. The method appears to hold a number of
possibi]ities for effective and unambiguous analysis of test score
paf%er&s‘across subjects within a‘c1assroom, items within a’ test, and,k
by extension, to separate groups of reSponents. It is a versatile
contribution to ;hé field of testing, containing minimal requirements
for sample size, prior scoring, item scaling, and the Tike. The S-P
model lends itself to extensioﬁs into po]ychotomoﬁs‘scorjng analysis
of multipie pattans, and gna]ysis of patterns of item bias.

Test scores are placed in a matrix in whigh rows rgpresent
indivjdual repsondents’ reSpdnses to a'set of items, and columns
represent the responses given bj a group of respondents to a set of

: t . N . . .
jtems. The usual (and most convenient) entries in this matrix are
[}

zeros for wrong answers and ones for correct answers. Total correct

S
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Figure 1 .
S-P Chart for a Six Item Test Administered to 20 Students
. i
Items in ascending order of difficulty Average passing rate p 1 .425
rank 1 2 3 45 6 * Di'screpancy D* = .525
item # 1 54 2 36
Students, in ’ ‘ Caution
descending order Total Index for
) of total score ) ) Correct . Students
‘ Rank  I.D.# . . ¢
| 1 02 111.1 0 0 4 0.000
- 2 04 11110 O: 4 0,000
3, 05 1 1160,1:0 4 0.000
4 1 11061 1:0 4 0.034
. 5, 12 1010 1:1 4 0.552.*
6 14 1117100 4- 0.000
7 20 1 1-170.1:0 4 , 0.000 y N
. 8 22 1110 1:0 4 0.000 .
9 23 1110 0:1 4 , 0.276
10 07 1100 1:0 3 0.033
o1 17 1 10:010 3 0.033 .
& ‘ 12 19 171:0 1 00 3 0.033 ,
§ 13 27 1 1:0 1 0 0 3 0.033 B
14 29 0 1:1 0 1 0 3 0.433 * -
15 03 1 0:0 0.1 0 2 ) Of276 .
16 06 0 1:0 0 1 0 2 0.44865
* 17 08 1 1:0 0 0 O v 2 0.000 -
18 10 1 1:0 0 0 O 2 0.000
19 15 - 1: 0 1 0 0—90 2 0.241
° .2 16 1:0 0 1 0 O 2 0.276
21 21 1: 0 0 1 .00 2 0.276 -
22 - 28 1:01 000 2 0.241
23 01 :1 00 00O 1 0.000
24 09 :0 1 0000 1 0.238
25 13 :1 00 00O 1 0.000 N
26 18 :0 00100 1 0.619
' ' 27 24 :0 00100 1- 0.619
- 28 25 :0 1 0000 1 0.238
29 = 26 :1 00 00O 1 0.000
ITEM TOTALS: .
' o 211110
381002 -
y ¢.* caution index 000 0O0O
for items S _ (g
111420 .
6 41230
7 81310
* *
' htS ‘lUi ' . )
. ) 3 <—"\'
* High caution index for unusual response pattern. .
\
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scores are calculated for ‘each respondent, apd total number of correct
responses are tallied for each item. Rows are reordered by.descending
total number of correct. responses; co]umns are reordered by ascend1ng

order of difficulty of items. The resulting matrix has severa]

4
: aspects which are particularly convenient for a detai]ed appraisal of

respondents or items, singly or co]]ect1ve1v (A short example,

annotated and indexed with severa] computations to be explained below,

is shown on the following page.

Two cumulative ogives are drawn over the matrix to form the
frameuork for further analysis. - Because the data is discrete, the
ogives take on a stair-step appearance{'but both can -be thought of” as
approximaticns to curves which describe in‘summary form the two
distinct patterns embedded in the‘datg. %he first is a curve
reflecting respondents' performance as ~shown by their.total scores;
the second is a similarly overlaid ogive curve reflecting item
difficulties, In one special circumstance, the two curves describe
0n1y one pattern if the matrix of items -and respondents is perfectly
matched in the sense of a Guttman scale, both of the curves overlap
ekactly. All of the correct responses would be to the upper ‘left
wh11e all of the incorrect responses would be to the lower right.
However, as the occurance of either unanticipated errors by .
respondents with high scores or‘unanticipated successes by respondents
with low scores increases, or as the pattern of responses becomes ‘
increasingly random, the respondent or student curve (S curve) and the
jtem or problem curve (P-curve) become 1ncreas1ng]y discrepant. Sato
has developed an %ndex which evaluates the degree of discrepancy or

lack of conformation between the S- and P-curves. This index will be

192 ‘ ,
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For-any respondent, or for any item, taken individuaily, the

pattern of scores reflects that row or column in relation to the

pattern established by the configuration of sorted rows and columns.
For any given indiyidua1 respondent or single item, the response
pattern may be "pgrfect]y ordered" in the sense used above.- The row
or column shares a symmetry with the associated row or column
marginal; in the case‘of dichotomous Qata this symmetry iglseen in a
high positive point-bjseria] correlatian. As the match between

. patterns declines-- that is, as the row or”coTumn under consideration
shares less and less in common with the associated marginal formed

.

’from all rows or all co]umhs--thg point-biserial also declines.
Unfortunately, rpbis is not independent of the proportions within

the data and never reaches 1.0 in practice. Cases of“comp1ete
"symme;ky" between rod\3?3é01umn and the cqrresﬁonding margina{ which
happen Po diffe; in proportions do not yield the same correlation

. coefficients.
| An index which is stab!e acfoss differing proportions is Sato's

| Caution Index C, which giQes a value of .0 in the condition of "perfect
> symmetry” bethen row or column and row marginal or column marginal.
As unanticipated successes or failures increase and fsymmetry"
declines, the index increases (a modification of the Caution Index,
called C*; has an upper bound of 1.0)." Thus a very high iﬁdex value
is. associated with a respondent or item for @hich the pattern of

é obtained respoﬁses is very dfscrepaht from the overall pattern

established by ald members of the set.

103 :

" \
| - 3.4 - ~
. " zero in the special case of perfectly ordered sets, gnd will approach
-
' 1.0 for the case of totally random data. . .
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Harnisch and Linn (1982) present the modified Caution Index as

follows:
n,, i
- _ u,, n
* jZl(l uOn Jea, 11 17 Mg
c, = .
, i ni_ . 3
: nyc ol n,
j=1 7j j=J+1l-n ]

. /
_ where i 1,2,...,1 indexes £QE—E§9minee,
r . -

J=1,2,.0.,d indexes the.it-m,
“ij = 1 if the respondent i answers item j incorrectly,

0 if the respondent i answers item j ihcorrgctly,
n; = total correct for the ith respondent, and

} \
nj; = total number of correct respenses to the jth item.

Harnisch and Linn explain that the name of/the index comes from
thé notion that a large value is associated with respondents that have
unusual response patterns. It suggests that some caution may be
needed in'iﬁterpreting a total correct score for these individua:s.

An uﬁusua] response pattern may result from guessing, carelessness,
high anxiety, an unusual instructioha1 history or other experiential
set, a localized misunderstanding that influences responses to a
subset of items, or copying a neighbor's "answers to certain questions.

A large value may a]so suggest that some individuals, have
acquired skills in an order which is not character1st1c of the whole
group. The index says nothing about the most able respondents with

perfect total scores, because the "symmetry" condition is met. More

importantly, if a respondent gets no item correct whatsoever, both the

-
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total score and the caution index will be zero since, again, the
"symmetry" condition is hefprin this situation the aQéj]ab]e
information about the respondent is insufficient to make any useful

—-diaéﬁg;?Su Most persons, though, will achieve total scores between
the extremes and for them the caution index provides informatio;.that
is not contained in the total score. A large value,ef the caution
index raises doubts about the validity 6f the usua‘;jnterpretation of
the total score for an individua1: A%

A relaled development is a modification of the Caution Index to
examire patterns of responses to clusters or subtesf scores .and an
"jdeal" pattern of scores‘bf individual subtests, the perfect Guttman
pattern (Fujita and Nagaoka, 1974, in Sato, 1981).

sato has developed an index of discrepancy to evaluate the degree
to.which the S and P curves do not®conform either to one another or to-
the Guttman scale. Except in the case of perfectly ordered sets there

_is always some degree of discrepancy between curves. The index is

explained as follows:

D* = A(L\]aE) h

where the numerator is the area between the S curve and the P
curve in the given S-P chart for a group of I students who took
J-problem test and got an average problem-passing rate p, and

A.(1,d,p) is the area between the two curves as modeled by
cBmulative binomial distributions with parameters 1,J, and p,
respectively (Sato, 1980, p. 15; indices rewritten for
consistency with notation of Harnisch & Linn).
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The denominafor is a function wnjgh expresses a truly random
pattern Of'Tesponses for a test with a given number of subjects, given
number of items, and given averagé paséing rate, while the numerator
reflects the oBtained pattern for that test. As the value of thi
ratio approaches 1.0, it portrays an increasingly random pattern\gi
responses. For the perfect Guttman scale, the numerator Wil] bel 0 and
thus D* will be 0. The computation of D* is functionally derived from
a model of random reSponseé, but its exact mathematical properties
have not been investigated thoroughly.

Also available, but not yet studied in detail, is an index of
“entropy" a£50q1ated with distributions of total scores fur students
choosing d1ffenent answers to the same question. This index explores
the part1cu1ar pattern of reSponses (right answer and all distractors
inc]uded)g in the context of uverall correct score totals for thesé :

responses. ‘

While most of the published work using the S-P method has
concentrated on b1nary data (0 for wrong answer, 1 for right answer),
and calculations are most tractable in that form, the indices
deve]oped from the conf1gurat1on of S- and P-curves are not limited to

l

such data. The technlqz; can extended to multi-level scoring (see
Possible Extensions to the mode] be]ow,.

Measurement philosophy. A precursor to the S-P method is the

concept of "higgledy-piggledy" (or "hig" for short) Suggested by : |

Thoﬁsog about 1930 and elaborated by waquE,in a trio of contributions
: Y ~

»

(1931, 1936, 1940), but evidently carried no further by educational

researchers at that time. Walker examined right/wrong_answers to a
. .

-
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set of independent items with particular reference to score-scatter,
which had been a focgs of attention since the early twenties. Where
scatter reflects random behavioré on the part of examinees, "hig" is
said to be present. However, |
By a test being unig (the converse of hig) we mean that each
score x is composed of correct answers to Xx easiest questions,

and therefore to no other questions. Hig implies a departure
from this composition. MNote that it is not sufficient for our

purposes to define unig by stipulating that every score x is

identical in composition--there must be added the condition that

it is composed of the x easiest items; in other words the score x

+ 1 always compromises the x items of the score x, and one more.

Now if hig is absent, tha%t is each score is unig, it, is easy to

show that an exact relationship exists between the n's of the

answer-pattern and the N's of the score scatter (1931, p.75).

The parallel to Guttman scaling, while the latter is far more
mathematically rigorous, is obvious; Sato's indiceq appear to address
the same underlying concepts.

Guttman's (1944) statistical model for the analysis of
attitudinal data was formulated to solve scaling problems in the
context of morale assessment for the U.S. Army. While the initial
approaches* were not at all technically -sophisticated and involved much
sorting of paper by hand, Guttman's conceptualization was gowerfu1;
the scalogram approach, and especially its mathematical underpinnings,
received extensive development during the 1950%s.. But by 1959,
Maxwell had expressed rather strong isappgintment with the narrow

range of application these procedures had enjoyed, and suggested two

general statistics which might serve to dissolve the arbitrary

distinction between qualitative and quantitative scales, and, at the |

same time, reduce some of the cumbersome calculations. (One of these
statistics is a regression coefficient developed from the residual

between observations and perfect patterns of responses to a given set
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of items, which bears some conceptual resemblance to Sato's D*.)
However, the primary audience for these technical contributions

appears to have been educatisnal statisticians and researchﬁrs.

Only 1nfrequent]y was attention given to s1mp]1fy1ng the techn1ques
for a broader potent1a1 audience (Green's (1956) contribution is one
exception, although pub]isﬁed'in'a highly sophisticated journal).

Many of the pubiications by Safa and col1eagueé in Japan seem

geared directly to end-users, teachers in the <lassroom who, with the

\ v
S-P method and handscoring or microcomputer processing, can analyze

their own instructional data for purposes‘of understnading their
students' comprehension and modi fying their own instruction. The
overarching concern of the Educational Measurement and Eva:luation
Group at” the Nippon Electric Company's Computer and Communication
Systems Research Laboratoriesvhas been development and dissemination
of readily understandab]e and adaptable procedures. Evident]y it has
proved popular in a variety of c]assroom sett1n§~31n Japan, and has
been applied to the fo]1owing areas:

- test scoring and.feedback to each examinee about his/her own
performance on a test - '

feedback to the instructor about both individual and group
performance

ana]ysis of types of errors made by students

analysis of instructional process and hierarchies of
instructional units i -

“item aanysis} rating scale analysis, questionnaire analysis

test score simulations.

development of 1nd1v1dua1 performance prof11es across repeated
testings

[

AS
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Two characteristics are shared by all of these approaches:

’

"first, the central Eocus of\the study is the degree to which items
and/or/respondents.are heteregeneous, and second, the actual element
of> raw data (say, 0 or 1) is assumed to be best understood in terms of
its position in a matrix with order]y properties. Interesting]y, the
artTCTe/ty Green (1956) noted aeove forms the oniy overt link between
the S-P method and earlier.work in English on ana]ys%s of response
patterns. ' &

Qhere the S-P method diverge~ from its predecnssors can be!seen
ih the very reduced role p]ayed by probability theory, and the
absence of anyth1ng resemb]1ng tests of statistical significance (a
shortcoming addressed below). Much of the work on the S-P method is
either in Japanese or in Eng]ish71anguage journals not generally
‘availables in the West. JIn the U.S. the small number of research
presentations using the S-P method Eo date is sma]l’(Hernisch,‘IQSO;
Harnisch & Linn, 1981, 1982; McArthur, 1982; Tatsuoka, 1978; Tatsuoka

& Tatsuoka, 1980). P

Assumptions made by the médel. The S-P method starts from a

comp]ete matrix of scores, doub]y reordered by I rows and J co]umns

_ P
The model applies equally well to the trivial case of a 2 x 2 matrix,
and to 2 x J and I x 2 retangular matrices; it also appears to have no
functional upper limit on the‘number of items or res;ondents.
However, missing data-cannot be incorporated effectively. That is,
each respondent and itemhmustﬁhave complete data since all
calculations are ﬁade with reference to i and j as constant va]ues.

For purposes of reordering, if two or more respondents have the same ™

total score their ranks are tied but their pos1t1ons within the sorted

1uy

-
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matrix must be unique, so ties between marginals are feso]ved
arbitrarily (a situation which could tause some small instability in
théVS‘and P curves). In re;pect to both individual scores and sets of
scores taken as a whole, no explicit probabj]istic formulation 1§/
invo]ved, although underlying the’analysis of the matrix is a mode]
prehised on cumu]at{ve_bfnom%al or ‘beta binomial distributions, with
parameters I (number of_gases), J (number of itéms), and p (avefage.
pasaing rate). No study has been made of how guessing affects the
obtained pattern of responses, nor how corrections for guessing might
affect the S-P chart. Because of the very small number ;f assumptions
made by the model, its.interpretation does not require a strong
thegretica] background,{and in fact can be annotated easily by
computer as an aid to the user novice. Indeed, yhe graphic
reordering with overlay of S$- and P-curves but no further statistics
appears-sufficient to a]]ow.teachers, with use of a brief nontechnical
reference guide, to make we]]-reasoned instruct?ona1 decisions.

One Timplicit assumﬁtion deserves special attention. In the
derivation of a caution index for i;em or respondenf, the entire
exi;ting conffguration of I items and J respondents, whether valid or

- .
not, enter: into cénsxderat1on. That is, because the frame of
reference does not extend beyond the data at hand, the derivative
indices are inherent]y subject to limits on their analytic utility.
However, it is important to recognize that for the great bulk of
pract1ca1 testing applications, such 11m1tat1ons in fact may be

advantageous. Each index also depends on a linear interpretation of

sfeps between margiha] totals, although it is_readily demonstrable

vu
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that substitdkion of a highly discrimipating item for a weakly
discriminating one, gg_a'very able examinee for a poor one, can alter
many of the indices for both persons and items. Additionally, the
linearity constraint treats all data elements within the matrix
equally, deSpite unknown (and perhaps inestimable) contributions from
. chance correct responses. On the other hand, without further tests of
significance, the resulting statistical uncertainties, which are small
under most conditions, have little practical importance in the usual

classroom situation.
o Vs

Strengths and weaknesses. Xﬁbvious strengths of the S-P system

are iJ% §imp]icity, wide potent qldgydiénce, And portabi]ity. The
code required for Zomputer processing can be exceptionally brief‘an;
with the increased availability of microcomputers, can be delivered to
the classroom teacher directly. According to Harnisch and Linn
(1982), the caution indices compare well with Cliff's (1977) Ciq

and C, Mokken's (1971) H*., Tatsuoka and Tatsuoka's (1980)

23
Norm Conformity Index (NCI), and van der Flier's (1977) u', ail of
which are harder to Ea]cu]até as a rule. As an inherently flexible
system, it appeérs to be suitable for a variety of test types, and for
a range of ana]y§es even witﬁin the same test. The novice user need
not master the full range of calculations in osder to make excellent

ouse of more‘elemehtary portions of the resu1t§. A sophisticated user
can easily }terate selectively through an exfsting data set, choosing
particular items or persons not Qeetingy%bme criterion for
performénce, and recasting the remaining matrix into a revised chart.

Under certain conditions, addressed below, the method can be adapted

to examination of test bias (McArthur, 1982).

il
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Weaknesses include the following three general criticisms. No
substantive body of psychometric or educational theon} preceded the
development of praética] app]icatiohsﬂof the model because in fact its
deve]opmént was not paradigm-dfiven. Instead, the S-P techniques
arose in response to a perceived need for classroom teachers to have a
readily interpretab]e, minimally complex tool for test analysis.

Thus, at present little can be said regarding questions of
reliability, validity, true scores, scaling theofy, or quality of

- measurement. No extant work addresses.either the problem of
signa]/noise ratio or of model fit. The absence of a strong
theoreti;a] base dampens the development of ratjonally interconnected
research hypotheses, although the method offérs ample opportunities ,
for direct investigation of individual perforhance and item
characteristics. The pbsence of strong theory-derived hypotheses
leaves a recognizable gap in the ability té draw strong inferences
from the S-P pethod. That {s, in developing a diagnostic
interpretation of a student's score pattern, the teacher or researcher

”must make a conscious effort to\EET;;ie the evfdence in light of §omé

\ /

uncertainty about what constitutes critical or significant departure’
from the expected. R (
‘ o |

These weaknesses do not affect the c]aséfoom teacher to any major
degree.. In the classroom, the technique is]hsed for confirming
knowledge about individual students gaingdfin the course of
interaétion with the class, and/or to confirm that items on a

' X
particular test are reasonably well suited to the class. From the
researcher's viewpoint, the weaknesses constitute rather important

blocks to further development. On the other hand, because of some f
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points of similarity between the S-P technique ahd less arcane aspects

of a number of existing models, hypothes1s bu11d1ng tends to proceed

anyway. The absence of recogn1zab1e criteria for estab11sh1ng

~ statistical significances for degree of heterogeneity is an important

technical problem. Because the various'indices appear to share a

great deal in common wikth.indices having known statistical properties

/
‘from other research vodels, an initial direction er such effort would

be to examine these paraHe]s.1

Present areas of application. All of the published studies in

English to date uti]ize}the S-P method exclusively in the context or
right/wrong (1/0) scoring. These studies each use data collected from

multiple-choice tests (generaily reading or math)‘addinistered to

‘primary “or secondary 1eve1 students. In this body of 11tera%yre the

general application is -either to the task of individual student
analysis, or more frequently, to item analysis. With an appropriate
microcomputer--one marketed exclusively in Japan is con?igured

exclusively for the purposes of the S-P method--classroom teachers can

%;use the technique interactively. Science teachers in Japan are
? \A

evidently the largest cluster of users, although details about

acceptance and daily utilization remain sketchy. \

3

A different application arises in the context of large-scale

v

assessment. Harnisch (personal communication) reports that' several

i i

school districts have.contracted for S-P analysis of mid-year and
) |

final achievement test scores. Several thousand individua]sﬂtested on
dozens of items pose no new conceptual or mathematical comp]éxity and

in this situation the results cahabe used to address both iteh—]eve]

\ lld ‘l‘\_‘.

\ '
| '
i

\
1 Strong parallels also can be found with aspects of the analysis of
planar Wiener processes and Spat1a1 patterns, from the doma1n of

mathemat1ca1 geOphy51cs. ‘ . ' |
) L g o .

and aggregate-level questions.
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fossib]e extensions of the model. Three new directions for the
4

S-P method are being explored. The first is the app]icétion of

' 13

iterative procedures, first suggested by Green (1956)ﬁjn a brief
paragraph on p-tuple analysis of Guttman scaies. Zimﬁer‘(1982) has
c;11e¢ted extensive developmental data on children's -perception of
various tasks and attributions; this data incorporates multiple |
discrete levels of perfoFmance arr7nged,_a&cordipg to’theory, in a
logical staircase asc;pdency. P—tﬁp]e jterative analyis by the S-P
procedure appears to offer answers to thréé questiois: a) does broad
sample of children respond in an Ord8r1y‘ghnner to the range'of tasks;
b} does such order reflect known characteristics Bf the/samp1e (viz.
deve10pmen£a1 level as méasured on stand;rdized(procedurgs); and cj do
deviations from the symmetrical relationship between the devg10pmenta1
c0mp13%§£2;6f the task and the deji10pmintal level of the child i@
ref]eét coisistent support for one ofgagother c0mpeting theory of

deve]opmenf\ For this data, separate S-P analyses were made with the

-
" first developmental level scored O and all others 1, then the first

two tevels scored Oﬁand all others 1, and so on. Stability of person
order and %tem ordef, uniformity of the staircase intervé]s, ‘and
re]atidﬁEEips between itep difficulty and ‘item complexity can be
studied. Pre]iminany;evidence suggests that the S-P _method provides a
system of analysis for such multi-level data that exceeds the
exp]anatBTy powe&_of several extant procedures.

In p—tup]e'éna1ysis; which makes use of Tepeated passes through

data, some questions of a technical nature are unresolved at this

time. For example, it is clear that successjve reorderings can

perturb the positional stability of any one'respondenu within the

v
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matr1§ or any one task within the matrix, to some degree. However,
changes in ordering contribute to changes in the S-P indices, and

-

whether such changes, *and/or linearity assumptions and violations
therein, play,a lmportant role is also Jnder stud; in the context of
th1s developmental g;z%. Another way to think of th1s problem is to
imagine a single matrlx of persons X items with the 'S-P chart from
each developmental 1ev§1 overaid. The most difficult tasks would be
accomplished only by the most developmentally advaﬁQSd individuals,
and belowvaéqertain competence (i.é. the highest S-cﬁﬁye on this
compound chért) virtual]& no one would be expected to succeed on those
tasks. The ordering of those pqrticipants who fail at all tasks of
that difficu]ty level is'arbiﬁrarﬁ, belcause their total score for
these most difficult tasks is zero. But their ordering would not be

arbitrary on tasks of moderate or low difficulty, at which more

successes mfght be anticipated and the corresponding S-curves would be

"located lower on,tba chart. What constitufés Qiceptable and

1nterpretab1e s]1ppage qf this kind needs furthér probing. Perhaps

the best ana]qu is to th% term "se1che,‘ drawn from the field of

a

oceanography: it refers to regu]ar/’ent1re1y pred1ctab1e tidal
motions occuring within cohfined bodies of water. Such seiche in a'
pOchhOtOmOuS S-P chart ‘ought to show itself totally consistent and
predictable. ' , .

The second area for develobmeﬁt of the S-P method is in the realm
of scalar data, for which”a number\B{ statistical assumption; have
been developed. An example is signal detection analysis, in which the
"raw element" of data is once again a 0/1 response, this tiwe for

. L
absence or presence of perceived stimulus. A variety of complex
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statistical techniques have been used to investigate how such stimuli,
p-esented across a range of intensities over a repeated number of
trials, are processed by the receiver. The analog in S—P‘ana]ysis
might best be portrayed as a three-d1meQ§1ona1 matrix of persons, e
jtems, and repeategﬂtrials. Items are not necessarily objectively
identical from trial to trial, and responses are tempered by not one
but' several possible orderly progressions. Such three-dimensiohal and
higher—dimensioha] data challenges the S-P method to provide cohesive
summary statistics which can be evaluated probab111st1ca11y

An extension of the S P technique to the study of test b1as\has
been made by McArthur (1982). Nhere two distinct groups pave been ’
tested on the same instrument or on two instruments one of which is an
exact translation of, the other, S-P analysis offers an interesting
alternative to the complex techniques for detection of biased items
genera11y in use. McArthur studied the response patterns for items on
the California Test .of ﬁasic Skills, administered to both
English—speaking and.gpantsh-speaking children, the latter taking the
CTBS- ESpan014 Even when proport1ons of children achieving correct
responses to a given item d1ffer between the two 1anguage groups, the
item may not be biased. However, the D* values for the
student- problem matr1ces ca1cu1ated separately for the two groups
suggest that the Spanish-language group engaged in more ‘random
responding than did their English-speaking counterparts. A 8
s1gn1f1cant1y larger number of items for the fromer group shou\that
those children above the P-curve (ch1ldren who in a case of "s ymmetry

as def1ned earlier would be expected to do well) who gave the correct

response were frequently fewer in number than the corresponding sample

/———

116 Uy




- 3.18 -

1

- from the Eng]iéh—]anguage group. That {s, deleting cases below the

P-curve, which are more ‘1likely to have engaged in random responding,

(] - 4

leaves a finite number of respondents for whom the prediction qf
success is high. Obviously op easier items this reduced sample is
larger than for difficult items‘because of the shape of thé P-curve.
Nonethe]ess; while the p values for a given iteé may differ

¥

N ,
significantly between one group and the other, the proportions of

right dnswefs above the PJﬁurves can be statistically_identical. To
establish evidencé of bias, the additional requirement is that fo;
students in the disadvaniaged group who by their pattérn of
performance on the test as a whole should have succeeded with a

particular item, that item generated erroneous responding for one
Y o ’

group more than for another. ' ' -
'\
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- THE RASCH MODEL FOR ITEM ANALYSIS

Bruce Choppin
Center for the Study of Evaluation, UCLA

\ 1. Definition of the Nodel

The so-called Rasch model now widely employed for item analysts,
is only one of a complete family of models described by Rasch in his

1960 text. A1l may be .propeply called "Rasch Models" since they share

. a common feature which Rasch labeled "specific objectivity". This is

a property of most measurgment systems which'requires that the
comparison of any two objectﬁzfggt/ﬁave been measured shall not depend

&

upon which measuring instrument or jnstruments were used. It is a
familiar featuré of many everyday pﬁysica] measu;;ments (1ength, time,
weight, etc.). 1In the context of mental testing, it meansnthat the
compar%son of two individuals who have been tested should be
independent of which items were included in the tests. Traditional
test analysis based on-"true scores"” does ot have -this property since
"ccores” on one test cannot be directly compared to "scores" on
another. (The peculiar virtues of specific objectivity and'the
conditions needed to achieve it are discussed later in this chapter.)

]

Mathematical Representation

The Rasch model ig a mathematical formulation linking the
ﬁ}obabi1ity of the outcome when a single person attempts a single item
to the characteristics of-the person aﬁd the item. It is thus one of
the family of latent-trait models for the measurement of achievement,
and is arguably the least éomp]ex meerr of this family. In its

simp]est‘form it can be written:

121
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[

8 AV
Probability [Xyj =11 =

‘where, Xyi takes the value 1 if person v responds correC%le
to item i, and zero otherwise, |
Ay is a pahaﬁeter’descrfbing the ability of person v,
.and Dj is a parameter describin§ the difficulty of item i.
. _ In this formulation, A and D may vary from G to =. A
transformation of these parameters is usually introduced t0'si§pli§y
much of the mathematical analysis. This defines néw parameters for

person ability (o) and item difficulty (8) to satisfy the equations:

(& 6]
Ay =W Y and Dj =W ' for some constant W.

™

Probability of a correct response

\ ' 4 ' Ability in wits

Figure 1 : Item Characteristic Curve (wits) for the Rasch Model

. &
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logarithmic base, e. In this case the mode] can be written:

- 4.3

A further simplification, introduced by Rasch himself and used

widely in the literature, is to fix the constant W to the natural

| ‘ | t
(2) " Probability [Xyj = 1] = €

Jn this formulation, o and § can tﬁké al™eal values and measure
ability anéndiéfi;ulty respectively oﬁ the same "logit" scale.

The sign éf the expression (o - & ) in any partﬁcu]ar instance‘
indicatés the probable outcome of the person-item interaction. If T
@ > & then the most probable outcome is a correct response. {f

a < 6 then the most likely outcome is an incorrect response.

It should also be noted that the "odds" for getting a correct,

response (defined as the ratio of the probability for getting one ;,
to the prgbaﬁi]jtx for not getting one) take on é particu}ar]y

simple form:

e -
t ot
0dds [X = 1] = ——Cee * €
1 -2
1+e

-

or t = 10gg(o0dds)

For ‘this reason, the Rasch-model is sometimes referred to as the

"log~odds" model.

Alternative Units

As stated above,‘thé model based on the exponential function
yields measures of people and items on a natural scale, whose unit

is called a "ogit". Rasch himse1f used the model in'this form,

vogen
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and most of Wright's pubiications also make use of it. Mathematitally

'

and comphtationa]]y the Togit is convenient, but as an opérationa]
unit it has two drawbacks. First, a change in achievement of one
1ogi€ represents a considerable amount of learning. Studies in
various’ parts.of the WO}1d indicate that in a given subject area, the J L
typical child's achievement level would rise by rather less than half
a logit in a typical school year. In practice, many of the
differences in achievement level fhat we need to measure are much less
than this, as is the precision yielded by éur tests, so results are
commonly expressed as decimal fractions rather than as integeis.

Secoﬁd]y, logits are ugua1!y ranged around a mean‘of zéro (this
is a matter of convention rather than necessiﬁ&)'so that half of all
~ the values oStained\for pérameters are typically negative. In
general, teachers dislike dealing with negative Timbers, and the
prospéct of having to explain to an anxious parent what Jimmy's change
iﬁ math achieveﬁent from -1.83 logits to -1.15 logits éctua]]y means
" is too much for most of them.! |

The so]ﬁtion for practical applications of the Rasch scaling
technique® is to use a smé]]er and more convenient unit. This is
“accomplished by setting W to some value other than e. A number of
alternatives have been suggested, but the unit in the widest use after
the logit is obtained by setting W = 30'%. "This unit is known as the
"wit" in the United Kingdom and United States, and as the "bryte" in
Australia. Wits are‘typica11y centered around 50 with a range %rom N\

b

about 30 to 70. One logit is equal fo 4.55 wits. For:many purposes
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it is suffig&ent to report wits as integers. The particular value for W
is chosen so as to provide a set of easily memorized probability values,

as can be seen in the Table 1.

-

‘ - Table 1 '
The Relationship of Logits and Wits to the
Probability of Correct Response

/
(a = &) Measured (a - 8) Measured Probability of a
in Logits in Wits Correct Response
-2.198 . =10 . 0.107

-10099 —5 0025

0 0 0.50

+1.099 +5 0.75

+2.198 +10 ' 0.90

It must be emphasized that the choice of a unit for reporting is an N
arbitrary matter. Most of the theoretical work on the model, and all
the computer prograﬁs for parameter estimation in common use, worg in
1ggits-—trans1ating to wits or some other scale for reporting only if

. &~

desired.

Analytic Possibl %ies

Parameter estimation is a difficult issue in 1atent—traip 3
theories. That for Rasch model a variety of different estimation .
algorithms (at Jeast Six) have become available in the last fifteen

years results ‘from the mathematical simplicity. of the Rasch formulation.

:H .
oo

""“'-\v
—




The basic equation models only the .outcome of one particular
item-person interact{on, but since it does so in terms of a
probability function, it is necessary to accumulate data from several
such interactions in order to estimate parameters or test the fit of
the model itself. “

For example, the accumulation of responses of one individual to a
set of items may be used to estimate the ability parameter for the
individual, and the pattern of‘respgnses byvsevera1 individuals to two
items may be used to estimate the relative difficulty of the two
jtems. From a (persons-by-items) response matrix it is possible to
estimate both sets of parameters (abilities and difficulties), and
also to check on whether the model is anM;cceptab1e.ggpérating
function for the data. This ca]ibréfion of items, and the test of

goodness-of-fit to the model, correspond to item analysis procedureé

in c]ass1ca1 test theory (but see section 5(a)).

Once items have been calibrated, equations can be deve10pe$\to
predict the characteristics of tests composed of different samples of
previously ca]1brat%¢—4tems, or the performance of previously measured
people on new items. A]though the simplest: approagh to statistical
ana]ysié_requires a complete rectangular persons-by-items response
matrix, other procedures are available to handle alternative data
structures. For example, when a group of individuals take different
but overlapping tests, the persons-by-items matrixlwii1 necessarily be
incomplete, but it is still possible to calibrate the items énd v

. \ . t
measure the people. An extreme example, in which a computer-managed

125
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adaptive test is indiyidua]]y,tai]oréd to each testee (suchs;hat the
next item éiven depends on the responses to previous items), may lead
to a situation inmwhich every person tested may respond to a unique
set of items. If the items haye been ca]ibraﬁed in advance, it is
possible to estimate the ihdividua]'s abi]fty parameter at each step

of the sequence, and to discontinue testing when the ability has been’

. measured with the desired degree of precision.

j-

£

Estimation Techniques

Although this paper is not the place forla detai]ed‘bresentation
of the algebraic maﬁjpu]ation invo]Ved in the various algorithms for
parameter estimafion,.an outline of the different approaches may be
helpful.

Conventionally the starting point js taken to be a rectangular
matrix of persons by items in which the elements are one if a

particu]ar person responded correctly to the appropriate item, zero if

_ He‘reéponded incorrectly, and blank if the person was not presented

with the item. Initially we shall restrict the discussion to complete
matrices of ones and zeros such as occur when a group . of N;peOple all

attempt a test of k items. In most applications N is usually much
. . s\

larger than k .° Two summarizations of data contained in the N x k

matrix leads to effective strategies for parameter estimation (see

Figure 2). h

One, known as the "score-group method” clusters together all /

those persons who.had a particular raw score, and then counts within

each cluster the number of correct respoggzs to each item. This

/
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Persons

X=1 (correqgt)
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the numbef of people
who responded
« bi' correctly to item i
J and incorrectly to
item j.

Pi=-# correct respomnses to item i.

Score-group Summarization

number of persons in score-group r

°

. Pair-wise Item Summarization

Figure 2 : Data reduction strategies
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produces a score-group by item matrix as in Figure 2A. The cther
method considers the items two at a-time, and counts for each pair the
number of persons'who responded correctly to the first but incorrectly
to the second. This is known as the "pair—wise";approach and produces
an item by item matrix as in Figure'ZB. (A parallel analysis

gomparing the peog]e two at a time can be developed theoretically, but

has found little %yactica] application.) 'Both the score-group and the

( pair-wise approaches-are described by Rasch in his 1960 book, but

without the development of a maximum 1ikelihood technique he was
unable t§ exploit them.

The score-group method produces a (k + 1) by k matrix, but since
raw scores of zero and k do not contribute to the estimation
procedure, the summary yields k{k - 1) elements for use in the
estimation algorithm. The pair-wise approach resQ]ff in. a k by k
matrix in‘which the leading diagonal elements are always zero, S$O
again there are k(k - 1) eleménts in the summary on which the
estimation algorithm operates.

Analysis of score-group matrfx to separate information on o and

§ and thus obtain fully conditioned estimates for both the item
qifficuity parameters and the abilities associated with memberéhip of
score-group 1 through k - 1 is computationally demanding and
expensive. The bes;_;>ai1ab1e brocedureshag been prograﬁmed by
Gustafsson (1977), but, though ﬁathehatica]]y e]eéant and

statistically sound, it is far too expensive for routine use.
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However, Wright has shown that estimates developed from <the margins of

the score-group matrix can be developed very easily using a maximum

)

Tikelihood approach. Though the simu]tanéous estimation of both a

and 6§ sets of parameters introduces a bias, a simple expansion
factor #¥piied to the resy1ts can largely correct for this (Wright &
Douglas, 1977; Habgfmann, 1977), and this method is widely used in
practice. When the data are summarized in a score-group fashion, they
are conv?nﬁent for checking the assumption of equa]-discfiminating
power between items and the tests of fit developed by Wright and Mead
»{(1976) concentrate on this.

-

By »ontrast the pair-wise approach separates 1nformat1on about

the 6'§ from information about the «a's at the beginning. The matrix

of counts summarized in Figure 2B has conditioned out all information

abon variations in o« , so that a fully conditional estimate of the
8's (eithe} by maximum likelihood or‘ieast squares) ‘can bé o

obtained. Thé ability estimates for each individual are developed

from solving iteratively the equation:

k a-8;:
r- Z H 15[/ =0
i=1 10+ WO

where r is the raw score of the person, and the summation.extends only
’ ~

over those items that were attempted.

\
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The test of fit applied to the pair-wise summary matrix is.not
very sensitive to violations of the equal discrimination power
assumption (see section 3), but instead focuses on the issue of‘1oca1
independence between items (Choppin & Wright, in progress). In
practice, therefore, the two approaches may be regarded as
complementary.

Though slower than the Wright estﬁmation algorithm based on
score-group marginals, the pair-wise appro%ch has the considerable
advantagéhof,being.ab1e to handle incomplete data matrices-- - }
corresponding to all those app]ications“in which not every person
attempts every item. It js thu§ of pééticuiar\interest‘in~such fie]&s

as adaptive testing and item banking (Choppin, 1978, 1982).

/

* 2. The Measurement Piilosophy and Primary Focus of Interest -
; :

i/

Although it turns outﬁéhat the mathematical details have much in
common with those of “iteﬁ/response theory", Rasch derived his models
from a very diff;rent standpoint. In the first paragraph of the
preface to fhﬁ book which launched his ideas on measurenment (Rasch,
1960) he quotes approvingly an attack by B.F. Skinner on the
application of conventional statistical procedures to psychological
research.

"The order to be found in human and animal behavior

should be extracted from investigations into
individuals ... psychometric methods are inadequate for

such purposes since they deal with groups of
individuals." (Skinner, 1956, p. 221)

13y,
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Group-centered statistics, which form the backbone off*f‘f
conventional psychometric practice (factor analysis, analysis of
variance; etc.) require the c1usfefing‘of individuals into discrete
categories or populations, and further make assumptions about the
nature of vériation within these éategories thch Rasch viewed with
grave distaste. The alternative was to develop methods which would
work with individuals. , /

“Individual-centered statistical techniques require
models in which each individual is characterized
separately and. from which, given adequate data, the
individual, parameters can be estimated. It is further
essential that comparisons between individuals become
independent. of which particular instruménts - tests, or
items or other stimuli - withinm the class considered
have been used. Symmetrically, it ought-to b possible
to compare stimuli belonging to the s;@é ass -
measuring the same thing - independen of which
particuTar individuals within the class considered were
instrumental for the comparison.”" (Rasch, 1960, p. vii)

In this excursion into what he later ca]]é “specific

objectivity", Rasch is echoing‘a theme developed exp]jci%]y by

. )
L.L. Thurstone three d~zades earlier:

"A measuring instrument must not be seriously affected
in its measuring function by the object of E
measurement. To the extent that its measurement
function is so affected, the validity of the instrument
is impaired or limited. \ a yardstick measured
differently because of-the fact that it was a rug, a
picture, or a piece of paper that was being measured, .
then to that extent the trustworthiness of that
yardstick as a measuring device would pe impaired.

- _Within the range of objects for which the measuring
jristrument is intended its function must be independent
of the object of measurement. " (Thurstone, 1928, -

p.547). .




Reliance on this form of analogy to the physical sciences is (}::>

quite characteristic of latent trait measurement theorists. Wright
’(1968, 1977) also uses the yardstick as a convenient metaphor for a
test item. Others (Eysenck, 1979; Choppin, 1979, 1982) have pointed
out the similarities petween the méasurement of mental traits and the
measurement of temperature. The-ﬁnder]ying premise is that although
psychological measurement maybe’#ather more(difficu]t to accomplish
than is measurement in‘the fields of physics a;d chemistry, the same
génera] principles shou]d apply. Features which are chaéacterﬁstic of ’
good measurement techniques 1m physics should also be found in the
fialds of psychology and education.

Rasch himself draws od% the similarity between the development of
his model, and Maxwell's énaly;is of Newton's laws of motion in terms

/

of the concepts force and mass {(Maxwell, 1876). The second law Iinks'

force, mass and acceleration in a situation‘where although
acceleration and its measurement h;ve been fully discussed, the
concepts mass and force are not yet defined. Rasch (1960, pp.
110-114) considers the necessity of defiﬁing the two concepts in terms
of each other, anﬂ shows how appropriate manipulatjon of the ~
mathematical model (the “1aw")'and the éo]féction of suitable data can
lead to the (comparafive) measurement of masses, and the (comparative;

measurement of forces. He points out the close analogy to his

jtem-response model which Tinks ability, difficulty and probability.

Ability and difficulty “require related definitions since people need

-

tasks on which to demonstrate their ability, and tasks only exhibit

their-difficulty when attempted by people. Since his model is

q
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1

"specifiically objective", data can be collected so that the two sets
of parémeters are capable of separate estimation (as with force and

4

mass).
g ]

i
This approach to measurement is the primary focus of interest for

the Rasch model. Individuals are to be meésﬁred through the
estimation of parameters characteri;ing their performance. These
parameters shall be intgrpratab]e.by comparison with the parameters
estimated for other individua1§ (as in norm-referencing) and/or 1in
conjunction with the paramgter estimates for test stimuli {(as in

criterion-referencing). L\\//

3. Assumptions made by the Rasch Model

@

The basic assumption is a simple yet powerfyul one that derives
from the requirement of speci?ﬁc objectivity, so central to Rasch's
thinking about measurement. It is that the sé; of people to be

ﬂmeasured, and the set of tasks (items) used to measure them, can each
be uniquely ordered in terms respectively of their ability and
difficylty. (Ability and difficu]t& as a]reqdy described.)} This
ordering permits a pérameterization of people and tasks that fits the
simple model defined in.sec%ion 1 above.

The basit*Zssumption has a number of important implications. One
such assumption is that of local independence. The probabi1ity of a
particular individual responding correctly to a particular item must

4

not depend upan the responses that have been made to the previous

4 %éﬁaa T

G
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jtems. If it.did, then altering the sequence of items that mads ﬁp a
particular ts&t, would alter the ordering ofvpeop1e on the underlying
trait (in violation of the basic assumption).' Simi]ariy, local
independence requires that-the/reébonse of én individual to a
particular item is not affected by the responses given by other people
to the same item. If it were,.then it would be possib15i bylse1ective
c]uétering of people, to change the ordéring of items in terms of
their difficulty (in violation of the basic assumption). y,

Another imp]%cation that follows from the basic assumption of the
model is sometimes stated (rather confusingly) as “equality of
discrimination". It must be emphasized that this does not mean that
all items are a§sum$d to have equal point-biseria]ééorre1ation indices
with total test scoré, or with some external criterion. Rather, it
means that the signal/noise ratio represented by the maximum slope of
the characteristic curve of each item is assumed to be the same for
all items. If the slopes were not the..same, then at some point the
characteristic curves for two itéms would cross. This would mean that
the ordering of the'items in terms of difficJ]ty for persons of lower
ability would not be/the same as the ordering for persons of higher

ability (see Figure 3). This again violates the basic assumption.

K




Figure 3

(a) Characteristic curves for items (b) Characteristic curves for two items _ ° E
‘that fit the Rasch Model. with different discriminations.

Uni-dimensionality is also a consequence of the basic -
assumption. If/?ﬁe performance of pedp]e on a set of items‘depinded
on their individual standing on two or mor? latent traits, such that
the ordering of people on these latent traits was not identical, then
it would be impossible to représent the interaction of person and
task with a single person parameter for ability. |
A further assumption and one which is mathematically very

-

convenient, albeit somewhat unrealistic (at least on multiple-choice

s

jtems), is that there is no random guessing behavior. The model
requires that for any test item, the probability of a successful
response tends asymptotically te zero as the abi]i?y of the person
attempting it is reduced (see Figure 1).

Siﬁi]ar]y, there is a built in assumption, which has'been m?eh

less carefully explored, that as the ability of the person being =

s,
Lo,
Mot

considered increases, the probability of a successful respense to any

5

given item approaches one.

¢ , ' 13J )
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4. Strengths and Weaknesses and Gaps in the Development

The strong features of the Rasch model when compared with other

measurement models are:

(a) The combination of specific objectivity, a’ .
? property taken for granted in the field of
' physical measurement, and the model's mathematical l
“simplicity.

(b) Deriving from this, the separability property
which pérmits the estimation of person-parameters
and item-parameters separately. -

' |
(c) The existence of several a]gogﬁthms for parameter
estimation some of which are éxtremely fast and

’ which work well with small amounts of data.

(d) The ‘inbuilt flexibility of the system. As with
.other latent .trait models which are defined at the
item level, there is no requirement that tests be
of a fixed length or contain the same items.

(e) The close parallels that exist between the Rasch
model and the conventional practice of calculating
- raw score$ based on an equal weighting of items.
Rasch models are the only latent-trait models for \
which the raw score, as conventionally defined, is
a sufficient statistic for ability (and :

4' correspondingly the raw difficulty or p-value of
. an item is a sufficient statistic for Rasch
- ¢ difficulty).
[ Against this it must be admitted that there are areas of .

~considerable weakness.. The most serious focuses on the assumptions
o made by the model. These are, in generai, too strong to carry full
credibility. Ip practice some real data appear to fit the model
rather poorly. The assumptions of local independence and of no
gu:ssing (which are crucial to the model) are not strictly met<ian4

practice. Although the psychometriciah may be able to reduce the

guessing problem through the avoidance of objective items, and may be |,

able to structure the test and the conditions under which it is

136 |
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administered to improve local independence, in real life situations
these problems are rarely completely eliminated. The model also
dehands (as do most others) uni—dimehéiopa1ity (or, as Rasch calls it,
conformabf]ity), and while the items that comprise many existing tests
fail to meet this criterion, the eroblem is less crftitai. If one haeh
control over the test cohstructign phaee of a méasurement program,
then it is possible to build sets of items which satisfy the
uni-dimensionality assumption modérate]y“we]].

One feature of the model which has been described as a weakness
(Go]dste1n, 1979; Divgi, 1981) is that it implies a un1que order1ng of
items, in terms of their difficulty, for gll_individua]s. Thi§
appeers not to be sufficiently sensitive to the effects of
instructional and curritu]um variation,-aﬁd«gtands, therefore, as an
important criticism (but see Bryce, 1981).

. The seriousness with which such objections need to be considered
_dependﬁzgggg/thernature of the measurement task being addressed. Most
"”’/eaaggtfona1 instructien Brograms aim at increasing the learning of the
student and thus at increasing his ability to solve re1evant test
jtems. We would usually eXpect the ability to solve all relevant test
items to iricrease--but the relative difficulty of the items could: (and
normally would) remain unchanged. While this ié the dominant goal of
instruction, the model can handTe the situation aperopriately, and the
occasional ehanges in re1ative di fficulty Brought about by é]terﬁetive
curricula (see, for eiample, Engei, 1876 or Choppin, 1978) can shed
considerable 11ght on the real effects of the instructional pregram.

If, however, a section of curriculum 1s aimed specifically at bﬁéak1ng

I3
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down some piece of 1earnin§ and replacing it with another {i.e. making
»some items more difficult to solve, and other easierS'such as may
occur»during revolutionary changes in society,\then we may well feel‘
that the simp]e'mode1 proposed is inadequgte te descr}beﬁthe
situation. In this case the items measuring the “01d" 1earning and
Jthe "new" do not seem to belong on the same scale. Such
circumstances, however, are not routine in the United States.
Similarly, we find in general that the ordering of item .
difficulties is the same with respect to all students. Where one
student differs significantly in finding some item ﬁuch harder or
easie} than predicted by the‘model, then we have valuable diagnostic
information about that individual (Mead, 1975). In practice we rarely
find evidence for such differences, and where they do occur the
interpretation is usuelly‘c1ear and direct (for example, the student
missed in§truction ofi a particular topic).- If we were attempting to
measure in an area where there was ﬁo common ordering of item
difficulties for most students, then the model would appear quite
inapprOpriaEe. Such situations may be simu]atea by creating test
jtems whose solution depends upon luck or chance, but this is far
removed from pufEGSiye educational testing. 7
Experience over the last two decades suggeste that the
§implifitation made by the model in requiring a unique ordering of
'ftems is met adequatelyin practice. Deviations, where they do occer,
are indicatoe; of the need for_further investigation (Dobby &

Duckworth, 1979; Choppin, 1977). There seems little reasonm,

therefore, to ;egard this as a weakness of the Rasch approach.




5. AFeas of Application

The basic form of the model proposed by Rasch, and described in
section 1, dealt with the simplified situation where only tw0'possis1e
outcomes of a person‘attempting a test item were considered (i.e the
response is scored "right" or "wrong"). For this reason, perhaps,
most of the applications so- far developed Have been confined to the
use of ipbjective” test items for the measurement of achievement since

1

these are most natupally scored in-this fashidn.

(a) Itém Analysis /

The most frequent application of the model has been for item
analysis. Users have wanted to confirm that the model fits data they
have a]ready‘accumu1ated for existing tests; they seek clues as to th
particular tests are not functioning as well as they should; or-in the

.

construction of new tests they seek guidance as to which items to
include and which to omit. ) >

If is probably true to say, however, that fhe Rasch modeT.has not
proved particularly valuable, in any of these three roles. It can
detect lack of homogenity among items, but is proBab]y less sensitivé
to this than is factor analysis. It can identify items that do not

discriminate or for which perhaps the wrong score key has been

selected, but it seems no more effective at this than is the more

traditional form of item analysis. Th2 exception to this ~
generalization probably comes when tests are being tailored for a very
Specific purpose. Wright and Stone explore this in "Best Test Design"
(1979). 'Cérefuf\adherence td all the steps they outline would

,probably yield a te§x with better characteristics for the specific

v
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and intended purpose than would a tggf produced on the basis of only

/

traditional forms -of item ana]ysis/and the crude criteria they employ.

(b) , Scaling and Equating
/

A serigﬁs problem of traditional testing is that the “score"

produced,éan only be interpreted in terms of the particular test

,

used. ;The development of norms for standardized tests is an attempt
to gyércome this problem but this too has serious 1im}tafions. Latent
trait scaling has been used to tackle thiS questioﬁ directly. With
the Rasch model, the raw scores on one test are mapped onto their
latent trait-scale, and different tests can of course h&ye their
scores mapped onto fhe same scale {provided always that the dimension
of abiljty being measured js the same). The hetﬁod has been used to
compare "quasi-parallel" tests (e.g., Woodcock, 1973; Willmott &
Fowles, 1974); to link the tests given at different stages of~a
1ongitudina1 study (Engel, 1976; Choppin, 1978); and to check on tge
standardization characteristics of batteries of Puh]ishea tests (Rentz
& Bashaw, 19}6, 1977).

' It should perhaps be noted that although equating using the Rasch’
model appears more flexible than traditional procedures in'that only
the difficulty level of the two tésts is being compared. and other
characteristics such as test length, the distribution of item
difficulties, etc. maybe quite -different, there is an implicit
assumﬁtion that the "discrimination power" (in the sense discussed
above) of the items in the two tests are comparable. As a rule this
‘implies fhat the item types are similar. Attempts to use the Rasch

model td equate multiple choice and essay type tests on thé same topic

have led to inconsistent and bizarre'resulfs (Willmott, 1979; Vincent,

1980). 1’4”
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{(c) Item Banking

Item banks take the equating of test scores to its logical limit

by calibrating all possible performances on all possible tests -
composed of items drawn from a fixed set (the bank).

when a family of test items is constructed so that they
can be calibrated along a single common d1mens1on and
when they are employed so that they retain”these
calibrations over a useful realm of application, then a
scientific tool of great simplicity and far reaching
potential becomes available. The “"bank" of calibrated
jtems can serve the composition of a wide variety of
measuring tests. The tests can be short or long, easy
or h?rd,‘wide in scope or sharp in focus. (Wright,
1980).

An jtem bank requires calibration, and although in theory there
are alternative approaches, in practice the Rasch model has proved by

\ ‘
far the most cost eéffective and is the most widely used (Choppin,
: ‘ mos L ,

1979).
N
(d) Quality of Measurement.

An important development that is facilitated by latent trait
scaling is the ca]cu]at1on of an index to 1nd1cate the quality of
measurement for each set of test data, and if necessary for each

* person attempting a test or for each item. The Rasch model, for
example, yields an expaicit probability for each possible outcome of
every interaction of a person and an item. Where, overall, the
probabilities of the observed outcomes are too low we may deduce that
for some reason the Rasch model does not offer an adequate description
of a particular set of data. If the probabilities‘are generally in
the acceptable range, but are low for a particular jtem, then we may

conclude that this is an unsatisfactory item. Perhaps it does not

discriminate, or is addressing some different dimension of

’
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achievehent. If the brobabi]ities,are generally acceptable but are
low for a specific person, then we may conclude that this person was
not adequately measured by the test {perhaps he guessed at random, was
insufficiently motivatéd, or misunderstood the use of the answer
sheet). The reporting-for this person of a Tow measurement quality
index would impiy that the person's score should be disregarded and
dé/jthat a retest is appropriate. |

A recentextension'of this approach involves trying to identify
withinn the vector of item responses from a particular individual those
portions which providg reliable measurement information, on which
jtems (or groups of items) the subject appears to have guessed at |
‘randOm, and how the total vector of responses may be selectively
edited in order to provide a more reliable estimate of the subject's
level of achievement. .

!

6. Extensions to the Basic ModeT

L

Two types of adaptation and extension will be considered here.
The first centers arou&d‘the notion of sequential testing in which
evidence of the level of ability of the subject is accumulated in
Bayesian fashion during the test session anJ’may be used.to determine
which items are to be attempted at the next point of the séquence
and/or when to terﬁinate the testing session. This approach relies
upon the existence of -difficulty calibrations for a pool or bank of

test items. Most of the reseach that has been done so far has
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employed computers to maﬁage the testing session: to select items for
the subject‘to answer, to keep track of measurement quality, to |
generate up-to-date estimates of theﬂaﬁi&jty of the subject (together
with the aépropriate standard errors) and to decide when the session
'should be terminated. Wright and Stone (1979) point out that
individual people ca: do most of this for themselves if prov%ded with
suitable guidelines and computational aids, and in many circumstances
making the learner responsible fér evaluating his own learning is a
useful thing to do. é

. The second area of devq]opment from the basic Rasch model is in
the extensiop from simple dichotomous scoring 6f items (right-wrong)
to a more comp1ex(§ystem. Two separate situations need to be
considered. The first is when an item is not answereddfomp1ete1y but
enough is done to earn some partial credit. Data would fﬂen consist
of scores in the range 0 to 1 for’each item. The other case is that
whifh typica]]y occurs with raiing scales or attitude measures when
the respondent is asked to chopse one from among a finite number of
discrete categor1es, and each category contains 1nformat1on about the
standing of the respondent on same latent trait. Douglas (1982) has
considered the theoretical implications of generalizing tﬁe basic
Rasch model to include both these cases, and it turns'out that almost
everything that can be done for dichotomous items can also be done for
these m&rg complex methods of scoring. For the rating scale problem

both Andrich (1977) and Wright and Masters (1982) have found it

convenient to concentrate on establishing the logation of thresholds

Y

-
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(the point at which the probability for reponding in one categéry

passes the probability of responding in the next one - Figure 4).

Nfight and Masters have produced some interesting theorems about the
importénce of these thresholds being properly ordered, and about the
spacing of thresholds that maxjmizes the information gained. There \\\\

have been few pifctfca1 applications of this approach to date.

L3
v

3

I el el ' .

. latent trait

Figure 4 : The Probgbility of Responding in various categories.

" For the analysis of "partial credit" data two computer programs
(CREDIT by Masters and POLYPAIR by Choppin) have been devised and‘
applied to real data sets. The latter program, for example, was used
in the.assessment of writiné skills which forms part of the British .

National Assessment Program.

2
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7. Points of Controversy

In some ways the Rasch model represents a revolutionary approach
to educational measurement that discards many time-honored constructs
<x

in testing theory (e.g., true score, measurement error, and

reliability). On the other hand, it can-be viewed as providing a

. comprehensive and sound mathematical underpinning for the conventional

practice of using raw scores, and shows that in most testing
applications raw scores are all that are requfred. From this point of
view'tﬁé Rasch model may be seen as less radical than other latent
trait models. Perhaps because the former view of the model was the
first to catch the imagination in the United States and has dominated
efforts to popularize it, it has been a ;ubject of'continuing
controversy. The most strident arguments are not concerned with how
best to use the Rasch model, but whether or not its use is ever
appropriate. |

To some extent the Rasch model has been central in the general
attack on latent trait theory as applied to the measurement of student
achievement. Goldstein (1979) who has led this at;étk on the other
side of the At1antic; stresses the fundamental difference between what
he rééardé as well-ordered traits such as aptitude and intelligence on
the one hand, and the éomp]ex pattern of behaviors that we call
educational achievement on the other. In’his view it makes no sense
to apply ggx_unidimensional model to the assessment of achievement.

Less extreme in their implications are the arguments withih the

latent trait camp about whether the Rasch (i.e., one-parameter) model
/ v
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is adequate for achievement testing, or whether a more complex
(usually three—parametér) mgdel is indicated.
It is important to diffekentiate two kinds of usage. One is in
P 6 . . .

1 the users of Rasch models appear to

test construction where in gene
be on firm ground in c]aiming that\ a strategy to develop and select
items that conform to the Rasch mode] will produce better test
in;truments than would other more conventional strategies. The other
type of usage is coﬁcerned with the analysis of existing test data
(for example, the massive data sets of NAEP or the accumulated files
of SAT material at ETS) where items are likely to be so varied (and in
many éases o) poor)‘that it is comparftive]y easy to show that the
Rasch model is not appropriate. Devotees of the Rasch model redct‘to
this by dropping the non-fitting items (which may well be the
majority) and warking with those that are left--but this cavalier
approéch does not commend itself to many researchers. If one is
interested in ana]yzing and scaling aata sets which include some
possibly Very bad items, then something like the three-parameter model
’is going to be needed.
Thié qifferencg of emphasis among the areas of app]icétion has
its origins in contrasting views of measurement philosophy. As the
“next paper in this col]gzt%on makes clear, the Rasch model can be
regarded as a special case of the three-parameter model when the
discrimination pafémefers are held equal, and the "guessing” parameter
is fixed at‘zero. Mathemafica]]y, this yiew is undoqbted]y
correct--but philosophica11y; it is very misleading. Rasch developed

\

his model, in ignorance of Lord's seminal work on item characteristic

14y
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curves, on the basis of a set of teafures which were necessary for an
objective measurement system. For measurements with the required
properties he found that his model, or a simple mathematical

transformation of it, was the mathematically unique solution. The -

‘three—parameter model ‘that forms the basis of Lord's Item Response

Thoery is not, and cannot be, "specifically objective". Those whose
main interest is in understanding existing data sets, and therefore in
careful modeling of observed ICCs, seeslittle benefit or re]eQance in
speifit objectivity. Those who wish to construct insfruments to
measure individuals optimally tend to prefer the approach which offers
the stronger and more useful system. ICCsﬂyhich“ref]ect the behavior
of inefficient or ineffective ipems»have 1%tt]e interest for them. As
has been suggested_ear]ier in this paper, the Rasch model supports a

range of applications which goes.well beyond what a latent trait model

[

"that is not specifically objactive can manage.

In the view of this writer, much of the energy which has fueled
professional arguments over which is the better model (and the many
research studies whose main goal was to compare the effectiveness éf
the two models in exploring a particular set of data) stem from a -
failure to appreciate that the two models are basically very
different, and were developed to answer different questions. Neither
fs ever “true".. Both are merely models, and it seems clear that in
some app]ication% Bné is of more use .than the other and vice versa.

Among users of the Rasch model there is little tha; is currently

controversial, due in no.small part to the dominance of two computer

programs now in use around the world (BICAL developed by Wright and

1
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A \
hisrassociates‘jn Chicago, and PAIR developed by Choppin in London).
One current issue that requires clarification concerns the status of
“tests of fit". It is generally conceded‘ -Rasch users that whereas
'better tests of fit are avaifable for the Rasch model than for most
other psychometric models, they still leave a 1dt to be desired. 1In
most cases, showing that an item does not fit the mode]'mere1y
requ%res collecting a sﬂfficient]y large body of data. The area of
disagreement lies between those who prefer to treat fit/misfit as.a
diEhotéﬁius categorization and draw up decision ru]eé for dealing with
test data on this basis, and those who prefer to regard degree of -
misfit as a continuous variable which needs to be considered in the
éontext of.the whole situation. The present writer belongs in the
latter camp, but is prepared to admit that many if the "rules of |

thumb® that have been developed lack much theoretical or empirical

basis. ' o
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THE THREE-PARAMETER LOGISTIC MODEL!

Romald K. Hambleton
University of Massachusetts, Amherst

<

1. Definition and Background

In a few’words,,item response theory postulates that (a) examinee

.test performance can be predicted (or explained) by a set of. factors

called traits, latent traits, of abilities, and (b) the relationship
- R . “~

between examinee item performance and the set of traits assumed to be

influencing item performance can be described by a monotonically

increasing function called an item characteristic function. This

function specifies that examinees with higher scores on the traits
have higher expected probabilities for answering the item correctly
tﬁan examinees with lower scores on the traits.h In practice, it is
common for users of item response theory to assume that there is one
dominant factor or abi]jty which explains performance. In the
one—traft or one—dimensiona] model, the item characteristic function =

is called an item characteristic curve (ICC) and it provides the

probability of examinees answering an item correctly for examinees at
different points on the ability scale. In addition, it is common to
assume that item characteristic curves are described by one-, two-, or

three-parameters. The interpretation‘of these parameters will be

P
described in section 3. In any successful application of item

<

£

1 Laboratory of Psychometric ‘and Evaluative Research Report No. 126.
Amherst, MA: School of Education, University of Massachusetts,
1982. "
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response theory, parameter estimates are obtained to describe the test
items, ability estimates are obtained to describe fhe performance of
the examinees, and there is evidence that the chosen item response
model, at least to an adequate degree, fits the test data set
(Hambleton, Murray, & Simon, 1982).

Item response theory (or latent trait theory, or item
characteristic curve theory as it is sometimes called) has become a
very popular topic for research in the measurement field. There have
been numerous published research studies, conference presentations,
and diverse applications of the theory in the last several years (see
for gxamp]e, Hamb]eton et al., 1978; Lord, 1980; Weiss, 1980).
Interest in item response models stems from two desirable features
w;ich aré obtained when an item response model fits a test data seté

. ’
pescriptors of test items (item statistics) are not dependent upon the
choice of examinees from the population of examineeé.for whom the test
jtems are intended, and the expected examinee ability scores do not
depend upon the particular choice of items from the total pool of test
itemS'Ep which the item response model has been app]iea. Invariant'
item and examinee abi]ify parameters, as they are called, are of
immense value to measurement specialists.

Today, item response theory is being used by many of the large
test publishers, state departments of education, and-industrial Snd
professional organizations, to construct both norm-referenced and
criterion-referenced tests, to investigate item bias, to equate tests,
and to report test score information. In fact, the various

applications have been §0‘successfu1 that discussions of item response

theory have shifted from a consideration of their advantages and
\
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disqﬁvantages in relation to classical test medels to consideration of |

such ma£€érs as model selection, parameter estimation, and the
determination of model-data fit. Nevertheless, jt would be misleading
to convey the impression that issues and tgchno]ogy associated with
item response théory are fully developed and without controversy.
Still, considerable progress has been made since the seminal papers by
Frederic Lord (1952, 1953). It would seem that item response model 7
technology is more than adgquate at this time to serve a varjety of
uses (see, for example, Lord 1980) and there are several computer
programs available to carry out item response model analyses (see
Hambleton & Cook, 1977). s

The purposes of this paper are to address (1) the measurement
philosophy undgr]ying item response theory, (2) the assumptions o
underlying one of the more popular of £he item response models, the
three-parameter logistic model, (3) the strengths and weaknesses of
the three-parameter model, and present gaps in our knowledge of the
model, (4) severa1~péomising three-parameter model applications, (5)

extensions and new applications of the model, and (6) several

controversies.

2. Measurement Philosophy -

There are many well-documented shortcomings of standard testing
and measurement technology.l qur one, the values of such useful item

statistics as item difficulty and item discrimination depend on the

T "Standard testing and measurement technology” refers to commonly
used methods and techniques for test design and analysis.




- 5.4 -

particular examinee samples in which they are obtained. The average
level of ability and the range of ability scores in an examinee group
influences the values of the item statistics, often substantially.
This means that the item statistics are only useful when constructing.
tests for examinee populations which are very similar to the sample of
examinees in which the item statistics were obtained. Another
shortcoming of standard testing technology is that comparisons of
examinees on an ability measured by a set of test items comprising a
test are limited to situations where examinees are administered the
same {or parallel) test items. But, a problem is that many
achievement and aptitude tests are (typically) suitable for
middle-ability Students and so the tests do not provide very precise
estimates of ability for either high- or ]ow—abi]ity examinees.
Increased test score validity without any increase in test length can
be obtained if the test difficulty is matched to the approximate
ability level of each examinee. But, when several forms of a test
which vary substantially in difficulty are uﬁed, the task then of
comparing examinees becomes more complex because test scores, only,
cannot be used. For example, two examinees who perform at a 50% level
on two tests which differ substantially in difficulty cannot be
considered equiv$1ent jn ability, but how different are they in
ability? And, how can the ability levels of two examinees be compared
Qhen they receive different scores on testé which vary in their

difficulty?
Another shortcoming of standard testing technology is that it

provides no basis for determining what a particular examinee might do

e
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when confronted.with a test item. Such information 1S{Es§essary, for
example, if a test designer desires to predict test score “
characteristics in one or more popu]atibns of examinees or to design
tests with particular characteristics for certain  populations of
examinees. In addition to the three shortcomings of standard testing
technology mentioned ab(;'Ve, standard testing technology has failed to
provide‘satisfactory solutions to many testing problems: For example,
the design of fests, identification of biased items, and the equating
of test scores. For these and other reasons, psyéhometricians have
been investigating and developing more appropriate theories of mental
* measurements.

Item response theory purports to overcome the shortccmings of
classical or standard measurement theory by providing an ability
scale on which examinee abilitijes are independent of the particular
choice of test items from the pool of test items over which the
ability scale is defined. Ability estimates obtained from different
item samples for an examinee will be the same except for measurement
errors. This feature is obtained by incorporating information about
the items (i.e., their statistics) into the ability estimation

»process. Also, item parameters are defined on the same ability

scales They are, in theory, independent of the particular choice of
examinee samples drawn from the examinee pool for whom the item pool
is intended although errors in item parameter estimation will be group
dependent. Mére will.be said about this point later. Again, item
parameter invariance across samples of examinees differing in ability

is achieved by incorporating information about examinee ability lgvels

into the item parameter estimation process. Finally, by deriving
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standard errors associated with the ability estimates, another of the
criticisms of the classical test model can be overcome.

In summary, the goal of item response theory is to provide both
invariant item statistics and ability estimates. These features will
be obtained when there is a reasonable fit between the chosen model
and the data set. Through the estimation procesé%-items and persons
are placed on an ability scale in such a way that there is as close a
relationship as possible between the expected examj;ee probabi]itiés
for success on test items obtained from the estimated item apd, ability
parameters and the éctual probabilities of performance for examinees
positioned at each ability level. Item parameter estimates and
examinee ability estimates are revised continually until the maximum
agreement possible is obtained between predicfions baséd on the
ability and item parameter estimates and the actual test data.

The feature of item parameter invariance can be observed in
Figure 1. . In the upper part of the figure are three item
characteristic curves (ICCs); in the lower part are two distributions

of ability. When the chosen model fits the data set the same ICCs are

obtained regardless of the distribution of ability in the sample of

examinees used to estimate the item parameters. Notice that an ICC
provides the probability of examinees at a given ability level

answering each item correctly but the probability value does not
depend on the number of examinees located at the ability level. The
number of examinees at each ability level is different in tﬁe‘two
distributions. But, the probability value is the same for examinees
in each ability distribution or even in the combined distribution. Of
course suitable item parameter estimation will require a heterogeneous

distribution of examinees on the ability measured by the test.
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It is possible that to some researchers the property of item
invariance may seem surprising and unlikely to be obtained in
practice, but it is a property which is obtained whenever we study,
for example, the linear relationship (as reflected in a regression
1ine) between two variables, X and Y; The hypothesis is made that a
straight line can be used to connect the average Y scores conditional
on the X scores. When, the hypothesis of a linear relationship is
satisfied, the same linear regression line is expected regardless of
the distribution of X scores in thé.sahp1e drawn. Of course proper
estimation of the line does Tequire that a suitably heterogeneous
group of examinees be chosen. The same situation arises in estimating
“the parameters for the item characteristic curves which are ailso

regression lines (albeit, non-linear).

3. Assumptions

When fitting an item response model to a test data set,

assumptions concerning three aspects of the data set are commonly made

(Lord, 1980; Wright & Stone, 1979): These three assumptions will be

introduced next.

Dimensionality. It is commonly assumed that only' one ability is .

7
being measured by a set of items in a test. Of course, this
assumption cannot be strict]y met because there are always many

_cognitive, personality, and test-taking factors which impact on test
performance, -at least to some extent. These factors might inc]udé
Tevel of motivation, test anxiety, ability to work quickly, knowledge
of the correct use of answer sheets, and other cognitive skills in

addition to the dominant one measured by the set of test items. What
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is required for thfs assumption to be met adequately by a set of test .
data 1is, a Adominant" component or factor which inf}uences test
performanée. This dominaht component or factor is referred to as the
ability measured by the test. This is the ability on which examinees
are being méasured. All other .contributing factors to test
performance are defined as errors;

Item response models in which a single ability is presumed

. -

sufficient to explain or account for examinee performance are referred

to as unidimensional models. Those models in which it is assumed that

more than a single ability is necessary to account for examinee test

performance are referred to as multi-dimensional models. These latter

!

models are complex, and to date, not we]l—deve]dpéd.

Principle of local independence. There is an equivalent

assumption to the assumption of unidimensionality known as the
assumption of the principle of Tocal independencel (Lord & Novick,
1968; Lord, 1980). In words, the assumption requires that the
probability of an examinee answering an item correctfy (obtained from
a one-dimensional model) is not influenced by his/her performance on
other items in a test. -When an examinee learns information from one

-

test item which helps him or her on other test items the assumption is
violated. What the assumption‘ﬁeans then is, that only the examinee's
ability and the characteristics of the test‘item related to the
dominant trait measured by the test inf1uencé performance.

Suppose we let uj,be the response of a randomly chosen examinee

on items j (i=l, 2, «ess N), and uj=1, if the examinee answers the

T:Actually the equivalence only holds when the principle of local
independence is defined in the one-dimensional case.

'S
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item correctly, and u;=0, if the examinee answers the item
incorrectly. Suppose also we let the symbols, Pj, and Qj (Qj=1—Pj)

denote the probability of thefpiéﬁﬁnee answering the item correctly

and incorrectly, reSpectively.“fTHé assumption of the principle of
local independence in mathematical” terms can then be stated iq the

following way: ,

prob {(U; =uy, Uz =up, «cc Un = up)

1-u
n

PUL QI U1 ph2 ;U2 ... Pyt 0

n u; 1-us
=1 pJQ, Y
j=1 J

In words, the assumption of local independence in the one

dimensional case requires that the probability of any response pattern

occurring for an examinee is given by the product of probabi]itiés
associated with his/her successes and/or failures on the test items.
The probabilities are obtained from a one-dimensional model.

Mathematical form of the item characteristic curves. An item

characteristic curve is a mathematical function that relates the

probabi]lty of success on an item to the ability measured by the set

of items contained in the test. “There is no concept comparable to the

notion of an item characteristic curve in standard test technology.
primary distinction among different item response models is in the

mathematical form of the corresponding item characteristic curves.

A

It

is up to the user to choose one of the many mathematical forms for the

shape of the item characteristic curves. In doing so, an assumption

-165;/
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about the items is being made which cam be verified later by how well

the chosen model "explains" the observed test results.

Each item characteristic curve for a particular item response
model is a member of a family of curves of the same general form. The
number of parameters required to describe the item characteristic
curves %n the family will depend on the particular item response
model. With the three-parameter logistic model, statistics which
correspond approximately to the notions of item difficulty and
discrimination (used in standafd testing technology), and the
probability of 1ow-abi11$y examinees answering an item correctly, are

5

used. The mathematical éxpression for the three-parameter logistic

curve is: Da_(6 -b
a -
e 9 g

(1) Pg(e) = Cg + (1-Cg) » 9=1, 2, «..y N,

Pg( 8) = the probability that an examinee with ability level ©
answers item g correctly,

b = the item g difficulty parameter,
N\ a = the item g discrimination parameter;

= the lower asymptote of an ICC representing the
. probability of success on item g for Tow-ability
‘ examinees,

D = 1.7 (a scaling factor),

and 4

n = the number of items in the test.

e




The parameter cq is the lower asymptote of the item

characteristic curve and represents the probability of examinees with
low ability correctly answering an item. The parameter Cq is jnc]uded
in the model to account for test response data e\at the low end of the
apility continuum, where among other things, guessing js a factor in
test performance. It is now common to refer to the parameter cq as“’

the pseudo-chance level parameter .in the model.

Typically, cg assumes values thaf are smaller than the value that
would result if examinees of low ability were to guess randomly to the
item.' As Lord (4974) has noted, this phenomenon can‘probab1y be
attributed to the ingenuity of item writers‘in developing "attractive"
but incorrect choices. For this reason, Cq is no longer called the
"guessing parameter". To obtain the two-parameter logistic model from
the three-parameter logistic model, it must be assumed that the
pseudo-chance level parameters have Zero-values. This assumption is

1Y

most plausible with free resbons% iteme but it .can-often be
approximately met‘when a test is not too difficult for the examirees.
For example, this assumption méy be met when competency tests are
administered to students following effective instruction. Perhaps the
most popular of the present item response models is the one-parameter
logistic model (or commonly nahed as the "Rasch Model" after Georg
Rasch the discoverer of the model). It can be obtained from the
three-parameter logistic model by assuming that all items have
pseudo-chance level parameters equal to zero and by assuming all items
in the test are equally discriminating. Also, the one-parameter
model, or Rasch model as it is commonly referred to, can be produced

from a different set of measurement principles and assumptions.

Readers are referred to Choppin (in this volume) for an alternate
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development of the gasch model. The viability of these assumptions is

discussed by Hamb]eion et al. (1978).
J

Item characteéistic curves for the latent linear mode1l and the

§

one-, two-, and th}ee-parameter logistic models are shown in Figure
2. Readers are réferred to Hambleton (1979), Lord (1980), and Wright

and Stone (1979) }or additional information about lcgistic test
! 8
models. P

|

4. Strengths, ﬁeaknesses, and Gaps

The exb]oraéion of item’response models and their application to
eductional test#ng and measurement problems has been under study for
about fifteen yéars now. Certainly there are many problems requiring
resolution but knough is known about item response models to use them
successfuTlx'iﬂ solving many testing problems (see Lord, 1980;

Hambleton, 1983). Item response models, when they provide an accurate

fit to a data set, and in theory, the three-parameter logistic model

" Wwill fit a data set more accurately than a logistic model with fewer

item parameters, can produce invariant jtem and ability parameters -,

described ea#]ier. Some of these promising applications will be
|

described iﬁ the next two sections (also see, Hambleton, 1983).

On the/negative side, the three-parameter model is basedvﬁpon
several strong assumptions. (Of course, the one- and two-parameter
logistic méde1s are based on even stronéer assumptions.) When these
assumptioﬁs are not met, at least to an approximate degree, deéirab]e

!
; /

1. The[item characteristic curves for the latent linear model are of
the/ form:

Pg(e)=bg+age‘ -

/ | | 1853
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Figure 2. Examplés of ite'm characteristic ‘curves.
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lower end of the ability scalé so that the c parameters can be

properly be addressed with the three- parameter model. With respect to
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. ' ¢
features expected from applying the three-parameter model will not be

' obtained. Other weaknesses, presently, of the three-parametér model B

are (1) the need of rather ‘large numbers of items and examinees. for

proper item parameter est1mat1on, (2) the relat1ve]y high computer. )

- 4
costs for obtaining item and ability parameter estimates, and (B)Tthe

~
e,
o

difficulties inherent in interpreting a complex model to test -
practitionersz c -

On the first point, Lord (1980) suggested examinee sample sizes
in excess of 2,000 are needed. Perhaps Lord is overly conservative tn

his figure but it does appear }hat sample sizes in excess of .600 or

700 aTe needed, and a disproportionate number of examinees near the

estimated properly. Because of the required minimum sample sizes, L

small scale measurement problems (e.g,, teacher-made tests) cannot

the second point, it is common to report high cost$ assoc1ated with
dsing LOGIST although there is evidence that the LOGIST program will
run substantially faster and cheaper on_some ‘computers. Hutten (1981)
reported an average cost of $69 to rum~25 data sets with 1,000
examinees and 40 test items on a CYBER;lZSM($800/hour for CPU time).
Finally, the untrained test developer will have difficulty working ) _
with three statistics per item-but as CTB/McGraw-Hi11 has shown in ﬁz\
building the latest version of the'Qa]ifornia Tests of Basic Skills,
test “editors can be trained to succdssfully use the additional I
information provided by the three;parameter model (Yen, 1983).

There is (at least) one practical shortcoming of the three? v

parameter model and its applications: ‘There does seem to be a




‘parameter estimates. Their results compare favorably with resuits
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shortage of ava{lable computer programs to carry out a three-parameter
logistic model analysis. The most readily available program is
LOGIST, desgribed‘by Wingersky (1953) and Wingersky, Barton, and Lord
(1982%. ., The most readily available version of this program runs on
1BM equipment although there’ is evidence that the program may run
substantia]fy faster on other computers. Additional invéstigatién of
thjs finding is needed along with on-going s?udies to try and speed up
the convergenFe of éstimates. ~In addition, there may be other ways to
improve the estimation process. Swaminathn and Gifford (1981) have

obtained very promising results with Bayesian item and ability

from LOGIST and they can .be obtained considérab1y faster and more
cheaplylthan the same estimates obtained with LOGIST.

There are (at least) three areés in which we lack full
understand1ng of item response models. First, additiona] robustness
studies w1th the one- and two- parameter logistic models are needed and
withkrespect to_a number of promising applications. What is the T
practical utility of the three—ﬁgrameter modq% in comparison to the |
one- and two-parameter models? Second, approﬂriate methods for
testing model assumbtions and determining the goodness of fit between
a model and a data set are needed. Hambleton and his colleagues
(Hambleton, 1980; Hambleton, Murray, & Simon, 1982) have made a
promising start by organizing many of the present methods and
developing several new ones. Much of their work involves the use Bérh\ﬁ*yj
graphs, replications, residual analyses and cross validation

procedures. More work along the same general lines would seem

&
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desirable. Third, there is a great need for persons to gain
experiences with the three-parameter model and to share their new
found knowledge and experiences with others.

5. Applications!

In this section, several promising applications of the
three-parameter logistic model will be described briefly: Item
banking, test development, criterion-referenced_testing, item bias,
and adaptive testing. Other applications of the three-parameter model
ére discussed by Hambleton et al. (1978), lLord (i980), and Hambleton
(1983).

Item bank1ng The deve]opment‘of criterion-referenged testing

technologx has resulted in increased interest in 1tem banking

(Choppin, 1976). An 1tem bank is a collection of test 1tems ‘stored"

with known item character1st1cs. Depend1ng on the intended purpose of

the test, items with desired characteristics can be drawn from the‘
bank and used to construct a test with known properfies. * Although
classical item statistics (item difficulty and discrimination) have
been emp1oyed for this pdrpose, tﬁey are of limited value for
describing the items in a banhk because these statistics are dependent
on the particular groﬁp used in the item calibration process.. Latent
trait item parameters, theVer, do not have this limitation, and
consequept]y are of much greater use in describing test items in an
item bank (Chopp1n,.1976) The invariance property of the latent

tra1t item parameters makes it possible to obtain item stat1st1cs that

are comparab]e across d1ss1m11ar groups. Since the item parameters

depend cn the.ability scale, it is not possible to directly compare

.
¢

\l“ ’

1 Some. of the material in this.section is taken from and/or ed1ted ’
from a paper by Hambleton et al. (1978) :
\



latent trait ‘iXem parameters derived from differnt groups of examinees
until the ability scales are equated in some way. Fortunately, the
problem is not too hard to resoive since Lord and Novick (1968) have
shown that tﬁe item parameters in the two grqups are linearly

related. Thus, if a subset of calibrated items is administered to
both groups, the linear relationship between the estimateing the item

Pt ol

" parameters can be obtained by form1ngﬂjw0«separate bivariate plots,
/

e

one establishing the re1at1onsh1p between the est1mates of the item
discrimination paraﬁeters for . the two groups, and the second, the
relationship between the estimates of the item difficulty parameters.
Having éstablished the linear relat.onship between item parameters
common to fheytwo»gro&ps, a prediction equation can then‘be used to
predict item paraﬁeters for those iremé not administered to the first
group. In this way, all iteﬁ parameters can be equated to a common
group of examinees ahd correSpoﬁding ability scafe. One Targe test
pub]ishing company, the California Test Buread/McGraw—Hi]], presently
customizes tests for school districts wih items calibrated.using the

three-parameter logistic model.

Test development. The three-parameter model is -presently being

"used by a number of organizations in test development (e.g.,

CTB/McGraw H111 ETS). The three-parameter model provides the test

developer w1th not only samp]e 1nvar1ant item parameters but a]so with J
a powerful method of item selection (B1rnbaum, 1968). This method
involves the use or information curves, i.e., items are selected

~ depending upon the amount of information they confribute to the total |

amount of information supplied by the test (Lord, 1980)1. Oné of the

_ . 1-Readers are referred to Hambleton (1979) for an introduction to item
[ERJ!:« and test information and eff1c*ency curves ¢

[
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usefJ% features of item information curves is that the contFibution of ,@?;
each item to the test information function can be determined without \
knowledge of the other items in the test. When standard testing
technology is applied the situation is very different. The
contribution of any item to such statistics as test reliability cannot
be determined imdependently of the characteristics of all the other
items 1p the test. |
Lord (1977) outlined a procedure for use of item information
curves to build a tQSt to meet any desired set of specifications. The
procedure %mp1oys.a pool of calibrated items, with accompanying
information curves; such as might be obtained from the item banking
methods described earlier. The procedure outlined by Lord consists of
the following steps:
1. Decide on the\shape of the desired test information curve.

‘ | Lord (1977) calls this the target information curve.

5.  Select items with item information curves that will fill up
the hard-to-fill area; under the target information curve.
3. After each item is added to the test, calculate the test
\\v//// informa;{on curve for the selected test items.
4. Continue selecting test items until the test information

curve approximates the target information curve to a

satisfactory degree.

An example of the application of this technique to the development of

tests for differing ranges of ability (based on simulated data) is

given~by Hambleton (1979).
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\ . Criterion-referenced testing. A principal use of a criterion-

referenced test is to estimate an examinee's level of mastery (or
“ability") on an objective. Thus, a straightforward application of

. ' the three- parameter model wou]d produce examinee ab111ty scores.
Among the advantages of tk. app11cat1on would be that items.could be
sampled (for example, at rangom) from an item pool for each examinee,
and all examinee abi\ity estimates would be on a common scale. A
potential problem with this application, however, concerns the
estimation of ability yith relatively short tests.

Since item parameters are invariant across groups of examinees,
it would be poss1b1e to construct criterion-referenced tests to
"discriminate” t different Tevels of the ability cont1nuum. Then, a
test developer might se]ect an "easier" set of té;t items for a pfei
test than a posttest, and still be able to measure “examinee growth"
by estimating examinee ability with the three-paramete: model at each .

| test occasion on the same ability scale. This cannot be done with

¢lassical approaches to test development and test score interpreta-
tion. If we had a good idea of the likely range of ability scores for
the examinees, test items could %¥e selected so as to maximize the test
information in the region of ability for the examinees being tested.
The optimum selection of test items wou1%bcontribute substantially to
the precision with which ability scores were estimated. In the case
of criterion-referenced tests, it is common to observe 5ub§tantia1]y
1owerA€est p%rformance on a pretest than on a posttest; therefﬁre, the
test constructor could select the easier test items from the domain of

jtems measuring an objective for the pretest and more difficult items

ERIC 17
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could be selected for the posttest. This would enable the test

constructor‘to maximize the precision of measurement of each test in
the region of ability where the examinees would most 1ike]y be
located. Of course, if the assumption about the location of ability
scores was not accurate, gains in precision of measurement would not
be obtained.

Thé'results reported in Tables 1 and 2 (from Hambleton, 1979)

. show clearly the advantages of "tailoring" a test to the ability level
of a group. Of course, the potential improvements depend on the
validity of a test developer's assumption about the examinee abi]ity
distribution. If he or she uses an incorrect prior distribution as a
basis for desighing a test, the resu]tfng test will cerfainly not have
the desired characteristics. \

Item bias. Identifying biased items in a test usually involves
comparing the performance of the subgroups of interest (e.g., Blacks,
Hispanics, and Whites) on the test items. The problem that arises is
that differences améng ng subgroups dae to bias is confounded with
any true differences in abilities ampng the Subgroups; Needed is an
item‘bias’detection method that canﬂzzntro1 for true ability
differences. Via a three-parameter model analysis, it is possible to
compare corresponding item characteristic curyes. At each ability
level, independent of the proportion of examiﬁeés in each subgroup who
are located at the‘ability level, the expecEed proportion of successes
in each subgroup,obtained from the ICCs, can bg/compéred. The ICCs
estimated in each group, in theory, do not dg;;nd upon the underiying

ability distributions. Any differences in the curves, beyond the




Tahle 1

Test Information Curves and Efficiency for Three Criterion-Referenced
« Test Designs From a Domain of Items of Equal Discriminatdion

and Pseudo-chance Leveis Equal to .20

: Test Information Curves Efficiehcy (Relative to Change 1n Effective
Ability | "Wide Range "Difficult the "Wide Range Form') Test Length
Level Form' "Easy Form" Form” "Easy Form"  "Difficult Form" |''Easy Form" '"Difficult Form"
~-3.0 .22 .36 .07 1.63 .31 632 ~697 .
-2.0 .86 1.31 .36 1,53 \ 42 53% ~58%
~1.0 2.08 2.81 .31 1.35 R 35% ~37%
0.0 3.04 3.29 .81 1.08 .92 87 . -8%
1.0 2.76 2.28 .%? ‘ .82 1.19 -18% 197 »
2.0 1.69 21,12 .28 .60 : 1.35 -34% 35%
3.0 .79 46 .12 .29 1.42 =417 ' 42%

bt
«d
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Table 2 | AN

\ .
Test Information Curves and Efficiency for Three Criterion-Referenced Test

Designs From a Domaln of Itemg with Varying Discrimination Indices
and Pseudo-thance Levels Equal to .20

Test Information Curves Efficiency (Relative to Change in Effec=zive
Ability | "Wide Range "Difficult the "Wide Range Form") ' Test Length
Level " Form" "Easy Form" Form" "Easy Form"  “Difficult Forw" | '‘Easy Form" "Difficult Form"
-3.0 .24 .37 .08 1.58 .35 T AN -65%
-2.0 86 1.27 37 1.48 b 48% - -567
-
-1.0 2.Q2 2.71 1.27 A.35 63 35% =377 f
N o
0.0 2.94 3.18 2.71 1.08 P .92 87 -8% N
w
1.0 2.65 2.16 3.18 81 1.20 ~19% 20% :
2.0 ° 1.59 1.06 2.16 67 1.36 ~33% 36% !
3.0 75 46 1.06 .61 1.41 ~397% 417
) q

£
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usual sampling errors, can be attributed to differential subgroup
responses to the items, i.e., bias. It is becoming routine practice
for several large test publishers to investigate bias in test items
with the aid of the three- parameter logistic model. Since the

three parameter model often provides 4 somewhat better fit to test
data at the lower end of the ability continuum (Hambleton et al.,
1982) than less general logistic models, the three-parameter model may
be more useful than other logistic models for studying bias.

Adaptive testfng. Possibly the first and most well-developed

application of the three-parameter logistic model to date is adaptive
testing (Lord, 1980; Weiss, 1980). In adaptive testing each examinee
is administered a set of test items "tajlored" or "adapted" to his/her
ability level. Clearly, total test scores cannot provide an adequate
basis upon whicﬁ to compare examinees. Some examinees will be o
administered sets of test items which are substantially more difficult
(or easier) than the test items administered to other examinees. By
~calibrating test items using the three-parameter logistic mode{ in
advance of the actual testing, and using the three-parameter model to
estimate examinee ability levels, examinees can be compared even
though the test items administered to different examinees may differ

) substantially in difficulty. Because of the ready availability of the

computer, scoring difficulties associated with the use of the

three-parameter model can be overcome easily.

THe U.S. -military is firmly committed to the use of adaptive
testing with the three-parameter model in many of its testing

programs. Presently a feasibility study is being conducted along

17,
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with the preparation of plans for adaptive testing implementatjon and

evaluation of the total adaptive testing system. - ggz

f
6. | Poss1b1e Extensions/New Applications

! Numercus researchers are presently addressing the development of
ne* item response models. For examp]e, Samejima (1979) is exploring
th% deve]opment of mu1t1d1mens10na1 models in which item optiops are
rahked based on their relationship to ability, and characteristic
cu}ves are produced for each opfion. McDonald (1982) has provided a
g%hera] formulation fér generdting a wide range of multidimensional
1ﬂnear and non-linear polychbtomous item response mode]sL Bock,
vy, and Woodson (1982) have desrribed a two-parameter item
résponse model which can handle continuous data and where the unit of
ana]ys1s can be a group (e.g., the classroom or a school). ¥C1s;mode1
will be especially useful in program eva]uat10n investigations. A
minor variation of the three-parameter modc1 which appears to have
some utility is a model in which a common value of the c parameter is
used for all test items (Wingersky, 1983). This revised
three-parameter model will receive some.use in the coming yearg. A
four-parameter logistic model has a]go been suggested kthe fourth
qpar;meter is the upper asymptote) but it~appeér§ to have very limited
practical.usefulness. All of these new models can be viewed as
modifications/exténsions of the three—parémeter logistic model and Qixff/

they will undoubtedly receive study from researchers in the coming

yearg. ’ ‘ . p
Because of’the newness of the IRT area, all applications of the

‘three-parameter model might legitimately be classified as new. For

the purposes of this paper, "new applications" will be those which to

N 177 ,




' proport1on -cor ect scale def!q/d/cver a domain of 1tems on the same
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date hé&é not been published. Two new applications, then, of the
three-parameter model to the problems of item selection (HamB]etdn &
de Gruijter, 1983) and score prediction (Hambleton & Martois, 1983)
will be described briefly next. | | ; .

Item selection. Item response models appear useful to the

problem of item selection because they lead to item statistics which
-~

are referenced to the same sca]e on which examinee ab111t1es are
-

defined. In addition, it shou]d be noted that /BI«prov1des a &

~

T, -

t
procedure for p]ac1ng a cut off score wh}ch is norma]]y set on a

//

£y
)
scale as the test jtems and the examinees (Lord, 1980) Therefore,

the usefulness of a test jtem for measurement at a7y point on the

ability scale can be assessed. ' [ A | ¥
Hambleton and de Gruijter (1983) described a %ine step procedure

for selecting test -items using thrée-parameter mode] item statistics,

and via a computer simulation study showed ﬁhe advantages, at least in

the absence of errors assoc1ated with item parameter estimates, of

~item selection with the aid of IRT over a standard item se]ectxon

" procedyre. - . .

Test score predictions. The concept of item banking has

attracted considerable interest .in recent years from schooldistricts,

state departments of education, and test publishing companies. When

item banks consist of test items which are technically sound and Ji

validly measure the objectiyes or competencies to which they are
referenced, the task of producing high quality tests is made

consiferab]y easjier. Item banks are most often used to construct

175
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-

criter%on—réferenced tests (CRTs) or mastery tests or competency
tests, as they are sometimes called. yhat is not  commonly available
for use with these CRIg'are derived scores such as percentiles.
Derived scores are not always valued but on occasion they are required
by school districts who receive federal funds (e.g., Title I) for=they
must evaluate their funded programs with national norms (e.g.,
percentile scores). )
In theory, the problem faced by schoel districts who réquire
information fur (1) diagnosing and monitoring student performance in
relation to competencies and (2) normative scores for the comparison
of examinees is easy to solve. Teachers can use their item banks to
bui]drclassroom tests on an "as-needed" basis, and when the néed
arises, they can administer any necessary&commercia11y arvailable
standardized norm-referenced tests. But this solution has problems:
(1) the amount of testing time for students is increased, and (2) the
financial costs of school testing programs is increased. On the other
hand, when testing time is held constant, and norm-referenced tests
are administéred} there is less time available for instructionally
relevant testing (i.e., CRTs). A more satisfactory sblution would
allow teachers to administer test items measuring objectives of
interest in their instructional programs, and at the same time, allow
for normative scores to be estimated from the test items which are
administered. An often used solution of selecting a norm-referenced
test to provide normative scores and critefion—referenced information
through the interpretation of examinee performance on an item by item

basis is not very suitable criterion-referenced measurement and will

- not insure that all competencies of interest are measured in the test.

17y
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= Hamb]etdﬁ (1980) suggested a possible ifem response model

solution to the prob]ém of providing both instructonal information and
normative information from a single test. A 1atent:ability scale to

.which a large pool -of test iﬁems are referenced can be very useful in
obtaining normative scores from tests constructed by drawing items
from the pool. A norms table can bé prepared from the administration
of a sample of items in” the pool. Then the ﬁorms table can be used
successfuﬁ]y with any tests which are constructed by drawing items
from the pool. Local norms can be prepared:by districts who build

_their own item banks. A test publishing company probably would
prepare national norms for selected tests constructed from their item
banks.

Hambleton and Martois (1983) recently finished a study in which
it was found that both the one- and the three-parameter logistic
models resulted in excellent predictions of how éxaminees performéd on
a norm-referenced test. Predictions were made from\tests’with items
that were easier, comparable ta, or harder than items in the normed

“test. Similar results were obtained in three subject areas at two
grade levels. Further research along the same general ]iﬁes seems
highly de%irab]e because of the importance of the problem area.

7. Controversies

Perhaps like any emerging area, item response theory has
generated considerable controversy and strong emotional feelings in
support of one model versus another. Much of the debate has centered

on the choice between the one- and three-parameter logistic models.

There has also been some controversy surrounding the utility of
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Bayesian estimators (Samejima vqﬁus Novick and Swaminathan) and the’
!

appropriateness of item response models for the analysis of aptitude
yersus achievement-tests. On this latter point there is some feeling
that items on achievement tests are instructionally sénsitive and

therefore item reSponse‘mode1 statistics will not be invariant in pre-

and post-instructional groups.

A VA -

With respect to the choice of the cne- versus the three-parameter

logistic model, a number of questions have arisen:
1. What is the effect of boundary constraints placed on item
and ability parameter estimates obtained with LOGIST?

2. .What is the practical utility of the three-parameter model?
- In most practical settings, won't the two models produce
highly similar results?

3. What is the additional cost of running a t%ree—parameter
model analysis and is the practical utilitxhof the gains
that accrue worth the financial costs and thé added
complexity which results? :

4. ° Since examinees can guess the answers to multiple-choice
test items, the thres-parameter model should be selected on
¢ the basis of this a priori consideration (Traub, 1983).

5. How well do the item response models fit any data sets?
This point is in dispute because , 'many of the present
goodness of fit statistics have been found to- be
inappropriate (e.g., see papers by Wollenberg, 1980; Divgi,
1981).

These and other questions will undoubtedly be addressed in the coming

years. Answers will contribute to our knowledge of the three-

parameter logistic model and the situations in which the model should

be used.
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MEASURING ACHIEVEMENT WITH LATENT STRUCTURE MODELS

Rand R. Wilcox
Center for the Study of Evaluation
University of California, Los Angeles

1. MEASUREMENT PHILOSOPHY

The basic assumption in latent class models designed to measure
achievement is that an examinee can be described as knowing or not know-
ing the answer ;o a test item, and that inferences about an é;aminee's
ability level should take this notion into accoqukf/Tﬁ§’§6a1s aof an
n-item test might be to determine how many of the items an examinee knows,
which items are known or which are not known, or what proportion of items
among a domain of items are known. The problem is that examinees might
give the correct response when they do not know, or they might carelessly
give the wrong response when they know. Latent class models are an at-
tempt to measure and correct the effects of these errors when addressing
a particular measurement problem. Even if some other model is ultimately
preferred, such as a latent trait model, latent class models are poten-
tially useful.

Currently it appears that correcting far guessing is more important
than might have beén expected. Moreover, assuming random guessing seems
to be an unsétisfactory so]ution. Consider, for example, the problem of
determining the length of a criterion-referenced test where the goal i;/////
to determine whether an examinee's percent correct true score or dgmai '
score, p, is above or zelow some knowﬁ constant Pg- If pO=.8 and n=29
jtems are used, the probability of correctly determining whether P>Pg is at
least .9 when p>.9 or p<.7, and when the binomial error model is assuﬁed.
If random guessing 1is assumgd, nearly 200 items are needed (van den Brink
and Koele, 1980), and :/ one a]]ows for the possibility thaf_guessing is

not at random, over 2,600 items are required to attain the same level of

1y,
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accuracy (Wilcox,‘l?BO). In some cases gues;ing might be nearly random,
but there is empirical evidence that this is generally not the case
(Coombs et al., 1956; Bliss, 1980; Cross/and Frary, 1977; Wilcox, 1982a,
1982b).

Another way of degscribing the measurement philosophy of Jatent class
models is that an examinee's £est score isva function, in part, of the
distractors that are used, and that it is important to take this effect
intb account. In the’éast this problem was ignbred, probably because
therg were ng reasqhéb]e ways of dea]ing with jt, and because it was not
clear just how seﬁ%ods this problem was. Now%fhowever, there are several
ways of measuring and correcting the effects of d%stractors. It might
appear that some latent trait modelsrdeal wiﬁh guessing, but in fact

¥
latent trait models ignore the errors that are of concern here. Thus,

. ~
these errors might have a serious effect on how latent trai; models are
used and interpreted. Wainer and Wright (1980) as well as Mislevy and
Bock (1982) examined certain aspects of how guessing affects latent trait

models, but the type of guessing examined here is different.
2. THE ,MODELS AND THEIR ASSUMPTIONS

Generally latent class models are based on assumptions about how
examinees beh&ye when responding to an item, or how items are related
to one another& or the manner in which tests are administered. While
a genera! descf%ption of latent class models is possible, such a des-

cription is not given here. Instead attention is focused on those models

that seem to have the most practical value.

1%y |
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“ A Latent Structure Model for Answer-Until-Correct Tests

This section assumes that an examinee responds to a multiple-choice

test item according to an answer—untii—correct (AUC) scoring procedure.
This means that if‘an examinee chooses an incorrect response, another
response is chosen, and this’ process continues until the correct response
is identified.

AUC tests are easi]y administered in the classroom using especially
designed answer sheets where the exa&inee erases a shield corresponding
to a particular alternative. (fhese answer sheets are available commer-
cia]iy, for example, through Van Valkenburg, Nooger and Neville in New
York, N.Y., and they are relatively inexpensive.) If the letter under
the shield indicates an incorrect response, the examinee erases another
shield, and this continues until tne correct shield is erased. g

Consider a population of éxaminees, and let L be the proportion
of the examinees who can e]imihate i distractors from consideration.

That is, because of partial information, some of the examinees will rule
out some of the distractors without knowing the correct response. If
therg are t alternatives from which to choose, and if theQ;xaminee can

eliminate t-1 distractors from consideration, the examinee is said to :

know the correct response. Thus, Ci_1 is the probability that a randomly

sampled examinee knows the correct response. Note that no distinction is
/

made between examinees who can eliminate a distractorg via partial

information and those that know. In other Words, an examinee might choose

the correct response, not because the correct answer is known, but because
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the test constructor was dnable to produce at least one effective distrac-
tor. Thus, it is assumed that at least one effective distractors is being
used, and presumably this problem can be minimized by choosing t to be
reasonably large. Of course the crucial step is finding someone who can
write effective distractors. s

As alluded to earlier, it is assumed that among the examinees who
do not know, some might be able to eliminate one or more distractors from
consideration via partial information. It is further assumed that once
these distractors are eliminated, the examinee guesses at random among

the alternatives that'remain. Hence, if P is the probability of a correct

response on the ith attempt of the item (i=1,...,t),

o

and Py = C0/3 .

In general, the proportion of examinees who know the correct response is

L Ct_l = pl - p2. (2.1)
The model implies that
Py > Py 2 . 2Py (2.2)

and this can be tested by applying results in Robertson (1978). Empirical

investigations (Wilcox, 1982a, 1982b) suggest that (2.2) will usually hold.

) 155 (
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The next section describes how one might prpceed when (2.2) appears to
be unreasonable.
For N randomly sampled examinees, let X; be the number who get the
correct response on the izb-attempt. Then the xi's have a multinomial
. . . . N Xl Xt {N = NI : , \J”N
distribution give by [x] Py” e Py where lx = N'/(Xl',"' xt.),

Y X; =N, O p; <1, and ) p, = 1. An unbiased maximum 1ikelihood es-

timate of P; is just Xi/N’ and so

e

Et—l = (Xl - X2)/N (2.3)

is a maximum 1ike1ih90d es?imate of Ty_1 the proportion of examinees

who know the correct response. Semantically, if we compute the propor-
tion of examinees who get the item correct on the first attempt, and then
subtract the proportion who get it rignt on the second attempt, we have
an estimate of the probability that the typical exaniinee will know the
answer.

Note that Cf;l given by (2.3) can be negative, But i1 is positive
when the model is assumed to be true. This can be corrected by simply
estima—ting‘gt_1 to be zero when ;t—l < 0. From Barlow et al. (1972), a
maximum 1ikelihood estimate of i1 under the assumption that (2.2) holds

can be had by applying the pool-adjacent-violators algorithm.

A Misinformation Model

The previous section assumedjthat the inequality in equation (2.2)
3

is true, but experience indicates that occasionally this will not be the

case. In this event a misinformatio. model may be appropriate. Of course

Al
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for some items an investigator might suspect a misinformation model 1is
needed before any test data is collected in which case the results in
this section might be applied without testing (2.2).

As will soon become evident, there is no spéecific misinformation
model, but rather a class of models that might be used. %he choice
from among these ﬁodeﬂs will depend on what seems to be a reasonable
assumption about how examinees behave. At the moment there are no em~i\
pirical procedures to aid a test construcwor when chobsing from among
the various misinformation models. So far, however, this does not seem
to be a serious problem.

To better understand how to apply these models, consider the follow-
ing test item.

When a block of iron is heated until it is red hot, it
gets bigger. If the iron weighs 20 1bs. at room temper-

ature, how much will it weigh when red hot?

1) 19.8 Tbs. 2) 20 1bs. 3) 20.1 lbs. 4) 20.5 lbs. /
5) 20.61 1bs. . '

This item is, similar to one investiéated in Wilcox (1982b) where the ex-
aminees were approximately 14 years old. The point is that it seems rea-
sonable to suspect that some examinees will choose from among the last.
three a]terﬁatives because theyibe]ieye the iron weighs more when it expands.
* The goal then is to devise a model tHat takeé this behavior into account.

In this section it is assumed that the examinees belong to one of
three mutually exclusive groups: 1) they know the item, 2) they have
misinformation, 3) or they do not know, do not have misinformation, and
guess at random. For examinees with misinformaticn, it is also assumed
that they v/»;iyﬂ. choose ¢ spec‘c, incorrect alternatives before choosing

the correct response. At the moment there is no empirical method for

choosing ¢; this must be done based on what seems reasqnab]e for the item ‘

N

N

v

i T,

11, /%mw}




6.7

e ,
being used. For example, in the item deézrib:d above, ¢=3 would be con-
sidered. In some cases fhe resulting latent structure model can be

, checked with a goodness-af-fit test, but as will be seen this is not

\ -

always the case. .
For the population o} examinees be1ng tested, let ¢ be the propor-

tion of examinees who kno& vy be the proportion who do not know, do not

have misinformation and gu%ss at random, and let Vo be the proportion

who have misinformation. ﬁf an AUC scorjng procedure is used, and if

P is defined as before, then for c=3 and t=5

p =/ | (2.4)
Py = vy/5 | (2.6)
oy = vyt y/S (2.7)
pg = vy/5 . / : (2.8)

Thus, L = Py=py aS before and ¢ 1s estimated with (xl—(x2 + x3 + X )/3)/
The model can be tested with the usual chi-squre test, and it gdve a good

it to thé/data in Wilcox (1982b).
. 1

b

More generally, for arbitra?y c,

Peyp = Vp t v/t . : (2.10)
and :
py= v/t i AL, c+ 1. | | \\ (2.11)
—Iiii : k.
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Slignt generalizations of the model may'be possible. Suppose, for
é%amp]e, ¢=3"and t=5, as in equations (2.4)—(2.8); but for examinees with
misinformation, let Vg be the proportion of examinees who choose the cor-
rect response once c=3 alternatives are eliminated. Then Pg and p4 take

the more general form

Py = V3Vp * vl/t (2.12)
and
p5 = (1"\)3)\)2 + \'l/t (213)

v

Now, however, a goodness-of-fit test is no longer possible because there,

are zero degrees of’freédom.
. / . . i
Equivalent and Hierarchically ReJated Items, and Related
_Eg;ent Structure Models '

! «\ g ’ . .

In recent years, several investigators have proposed models
based on the notion of equivalent or hierarchically re]gééd items. Two
items are said to be equ%va]ent if examinees know both o; neither one.
If in additian, there‘are examinees who know‘the first but not the second,
the items are hierarchically related. As arguegiby Mo]eggar (1981),
clearly there are situations where it may bg difficult or impdssip]e to ’

'(L , generate eqivalent itemé) However, experience suggests that there are
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situations where one of these assumptions might be rezsonable (e.g.,
Macready and Dayton, 1977; Harris and Pearlman, 1978; Harris et al., 1980).
It should be mentioned that in some instances a test consisting of
hiera?chica11y related items is considered to be desirable and the goal
is to measure the.extent to which a test has this propersy. Put another
,Way, the goal is to determine the extent to which the ite;§“an‘a test
form a‘Guttmaﬁ scale. One such measure was proposed by Cliff {1977).
(See also Harnisch and Linn, 1981, and the paper by MacArthur in this
volume.)
The simplest model consists of two equivalent itemé, and it arisés
as follows. Let ¢ be the proportion of examinees who know both items.
In contrast to earlier sections, a conventional scoring procedure is used.
That is, examinees get only one attempt at an item, and the item is scored
either correct or fncorrect! Let p%j be the probability of the response
pattern ij (i=0,1; j=0,1) where a 0 means incorrect, and a 1 means correct.

This, represents the probability of a correct-incorrect response for a

P10
randomly sampled examinee. If By isi the probability of correctly guessing
the response to the first item when the randomly sampled examinee does not
know, and if By is the corresponding probability on the second item, and

if local independence holds (i.e., given an examinee's latent state, the

responses are independent) then

"

g+ (1-2)B¢8y

1

(I—E)Bl(l'BZ)

p01 = (l"C)BZ (1'81)

poo = (1‘C)(1—81)(1-82)-

o
Ve
o
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Solving for ¢, B> and Bo yields

_ P10
By = ——
P10 * Poo
Po1 .
52 - N N
Por ™ Poo
and
r = 1 - (p01 + poo)(plo + \poo)/poo -

If Xij is the number of examinees who have an ij response pattern,
the unbiased maximum likelihood estimate of‘|:>1.j is ﬁij = Xij/N where, as
before, N is the number of randomly sampled examinees. Thus, ¢ can be
estimated.

An interesting feature of the equivalent item model is that it is

possible to include additional errors at the items level such as Pr{incor-

_rect|examinee knows) (Macready and Dayton, 1977). However, estimating

the parameters usually requires iterative procedures that are typically
implemented on a computer. Goodman (1979) describes one such procedure,

and Macready and Dayton (1977) used the scoring method (cf. Kale, 1962).

Testing Whether Two_Items are Equivalent

One way to check the assumption of equivalent jtems is to apply the
/
usual goodness-of-fit test as i1lustrated by Macready and Dayton (1977).

For some cases, such as the equivalent item mode] described”above, this o

cannot be done because there are Zero degrees of fWSSi .
An a]ternat1ve and relatively simple test of whether two items are

equivalent is possible using an answer—unti]—correct scoring procedure.

' 19




For a randomly sampied examinee let pij be the probability of a correct

response on the ith of the first item and .the jth attempt of the second.
If two 'items are indeed equivalent, and if for example, t=3, it can be

seen that

P12 = Po1 = P2z

and p31 = Po3 -

For recent results on testing thesefequalitjes, see Smith et al. (1979),

and Wilcox (1982e).
Hartke (1978) describes another approach based on latent partition
analysis, and an index_yroposed by Baker and Hubert (1977) might also be

useful. +

Hierarchically Related Items

Dayton and Macready (1976, 1980) describe very general latent strucnur%
models for handling hierarchically related items. Again these models can
be used to measure guessing, and they have the advantage of including

other errors at the item level such asz = Pr(incorrect|examinee knows ).

4

The model for AUC tests essentially sets ¢ = 0, but the practical impli-

cations of }his have not been established.

As was the.case for equivalent items, estimating the parameters in
the model requires iterative techniques. In some instances simple (closed
form) estimates. exist (e.g., Wilcox, 1980b), but these models make certain

assumptions that may be unreasonable in many situations.

195
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3. STRENGTHS AND WEAKNESSES OF LATENT CLASS MODELS

Latent class models have three primary strengths. First, it now
appears that one of two models can be used to explain the observed re-
sponses to a multiple-choice test item (Wilcox, 1982b). These models
are an oversimplification of reality (as are all models), but they seem
to give a good approximation of how examinees behave when taking a
test. OFf course future investigations might reveal that more complex
models are really needed, but so faf this does not appear to be the
case.

The second strength is that many\measurement problems can now be
solved that were previously impossib]e\to address. In particular, these

'4mode1s correct for guessing, or measure the effects of guessing which
in turn impfoves the accuracy of tests and measurement techniques.
Note that the:nature of -guessing in latent class models is different
from-the guessing parametef in latent trait models (Wilcox, 1982c).

Third, even if some other model is ultimately preferred, a latent
class model may be useful, for example, when estimating the item para-
meters in a latent trait model.

A weakness L{‘lgjen$*6fass models is that certain technical prob-
lems still need to be solved. These incTudé better ways of scoring an
n-item test, testing the model used in Wilcox (1982e}, and finding a
strong true-score model that is reasonable when the model in Wilcox
(1982a) gives a poor fit to data. Also, some examinees may give an
incorrect response when they know, but the seriousness of this problem

is not well understood.

19¢
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PRESENT AREAS OF APPLICATION

This Section outlines some of the measurement problems that can now

.be solved with latent class models.

The Accuracy of an Item and the Effectivenesé of Distractors

In addition to estimating the proportion of examinees who know the

-

item, fhe Tatent structure models for AUC-tests can be used to es-

timate the probability of correctly determining whether a typical examinee
knows the item. More specifically, assume it is decided that an examinee
knon the correct response if the correct answer is given on the first
attempt (i.e., a conventional scoring procedure is used). For a rand6m1y

sampled examinee, the probability of correctly determining whether he/she

knows is Just T = 1—p2 (Wilcox, 1981a), and this is estimated with ; = 1-x2/N.

Note that when.(2.2) is assumed 0 < p, < L, in which case % <t< 1.

19.
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" The parameter t is a function of two important quantities. The first

is the proportion of examinees who know the answer, i.e., i1 and the
second is the effectiveness of the distractors among the examinees who

do not know. To see this more clearly, note that

(4.1)

When ) is close to one the item accurately reflects the true latent
state of thegxamineesbecause presumably examinees who know wild choose
the correct response on their first attempt. As Ty_q MOVeS clgser to
zero, the accuracy depends more on.the effectiveness of the distractors.

Thus, it may be important to determine how well distractors are perform-

™

4rig among the examinees who do not Kriow.

"It can be shown that the distractors are most effective when guess-

ing is at random which corresponds to
Pp = P3 = +-- T Py (4.2)
(Wilcox, 198la). This sugdests (4.2) be tested, and/or we estimate how
"far away" the bi values are from the ideal case where (4.2) holds.
Testing (2.3) can be accomplished by noting that the conditional

distribution of Xos:vesXy given X3 js multinomial with parémeters N-x1
and piﬁjl—pl), i =2, ...,t. Thus, the ususal chi-square test can be

applied. That is, compute

(g2 41y )/ (81))7 (4.3)

(N-x;)/(t-1)

If x2 is greater than or equal to the 100(1-a) percentile of the chi-square

X% =
1.

Hi~ict

2
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distribution with t-2 degrees of freedom, reject the hypothesis that (4.2)
holds. For recent results on using (4.3), see Chacko (1966), Smith et al.
- (1979), Witeox (1982e).

Empirical results indicate that guessing will not be at random. Thus,
a more interesting question might be to determine whether the distractors
are "close" to the ideal situation where (4.2) holds. The first sten in
solving this problem is to choose a measure of how unequal the P; values
are (i = 2,...,t). Many such measures have been proposed whjch_have_siﬁi]ar
properties (e.g., Marshall and Olkin, 1979; Bowman et al., 1971). One

of these is the entropy function which was used by Wilcox (1982a), and

another is Simpson's measure of diversity (Simpson, 1949) given by

Writing (4.3) as

it is seen that the usual maximum likelihood estimate of Simpson's measure
. )

of diversity, namely, } (xi/(N—xl)) , is a simple Tinear transformation

i=2

of X2. Since X2 is better known than Simpson's measure of diversity, X2

will be used here.

It is helpful to note that the smallest possible value for X2 is

L = ﬁ—%l [(n-x,)(2r+1) = (t-1)r(r+1)] - nxg (4.4)

where r is the largest integer satisfying r(t-l) < n=Xq (Dahiya, 1971).




The maximum value is

M= (n—xl)(t—2) . (4.5)
(Smith et al., 1979). The closer X2 is to M, the more ef ‘sctive are the
distractors. Since L and M are known, the relative extent to which X2

is close to M can be determined. In particular,

E=(x2-L)/ (M-L)

measures the effectiveness of the distractors being used, where 0<E<l.
If E=0, the d1stractors are as effective as possible in determining
whether an examinee knows the correct response. As E approaches 1, the

distractors become lTess effective. /

Comparing Two Items

d
If the AUC model is assumed, and if independent-estimates of the p,

values for two items are available, it is possible to te the hypothe}is
that one of the items is at Teast as effect1ve as the second by pp]y'ng
results in Robertson and Wright (1981). The null hypothesis of i\gte est

K k

here is that . § pi/(l—pl) > ) p;/(l-pi), k=2,...,t-2 where p;
i=2 i=2
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)
is the p. value for the second item. Let 7 and T, be the value of fora
two items. Another way of comparing‘two items is to test whether the
first item is better than fhe second by testing whether T13%2' In effect
this apprbacﬂ_compares the overall effectiveness of the two items in terms
of the population of examinees, while the approach previously described

is to compare the effectiveness of the distractors among the exam-

inees who do not know.

\

Characterizing Tests

Let T be the value of ¢ for the TEE item on an n-item test. A natural

. _ n
way of describing the accuracy of a test is to use t, = ’ Ty - This is
- =l
the expected number of correct decisions about whether a typical (randomly

sampled) examinee knows the answer to. the items on a test. If, for example,

T = 7 and n = 10, then on the average, 7 correct decisions would be made

about whether an examinee knows the answer to an item, but for 3 of the

jtems it would be decided that the examinee knows when 1in fact he/she

does not.

Estimating T is easily accomp]ished using previous results. In

particular, for-a random sample of N examinees, 1€t X35 = 0 if the jEn

examinee Eets the iEh-item correct on the second attempt; otherwise

Xij = 1. Then

.i

is an unbiased estimate of Ts'

20
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The k Out of n Reliability of a Te.*

Once test data is available, the question arises as to how certain
we can bé that Tg is large or small.‘ That is, we waﬁt to estimate the
Pr(z, > to)(cf. Tong, 1978). Tnis problem is similar to one found in
the engineering literature where the goal is to estimate the § out of n
reliability of a system. Bounds on this probability can be estimated
without assuming anything about cov(x. ., Xi'j') (Wilcox, 1982e).

1]
The procedure is outlined below.

Let z;=1 if a correct decision is made about whether a randomly
sampled examinee knows the i h item on a test; otherwise zi=0. For a

randomly sampled examinee Pr(zi=1) = 15 Note that from preVious results

Pr(zi=1) = Pr‘(x].j 1). The K out of n reliability of a test is defiped

to be

Py = Pr(Zzi > K)
This is the probability. that for a typical examinee, at least k correct
decisions are made among the n items on a test. By a correct decision
is meant the event of correctly determining whether the examinee knows

an item. Knowing P yields additional and important information about

the accuracy of a test. An estimate of Pk is not available unless

.)=0, or h, the number of items, issmall. (See Wilcox, 1982g,

cov(zi,zJ

. 19823.)
For any two items, let Pym be the probability that a randomly =z-
lected examinee chooses the correct response on ‘the kEE attempt of the

first item, and the mEn attempt of the second, (It is assumed that both

[
‘
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g

items are administered according to an AUC scoring procedure.) Let

Kijéifo;...,f—l; :=0,...,t-1) be the proportion of examinees who can
eliminate i distractors on the first item and J distractors on the

second. Then, under certain mild independence assumptions

t-k t-m
= 11 e/ (DT
i=0 j=0

The equation makes it poss1b1e to express the K1JIS in terms of the

Pkm

pkm

, Next 1et e be the probab111ty that for both items, a correct de~
/ cision is made about an examinee's latent state. It can be seen that

R R Tt \

s which in turn makeﬁ it possible to est1mate <13 for any i and j.

and so & can also be estimated.

For the TED and jED-item on a test, let €43 be the value of ¢,
and define :
nil n
S = €2
i=1 j=§+1 ‘J
\ UK=TS-‘K

where T, was previously defined to be It and

VK = (25 - K(K-1)/2).

Then from Sathe et al. (19€0)

fK 2 K"* - (K 2)) 1/[n(n K+1)]

If 2V, < (m+K-2)Uy 4

K-1
2((k-1)0yy - Vg y

i pKZ
(K*-K) (K*-K+1)




where K* + K - 3 is the largest integer in ZVK—l/UK—l' Two upper bounds

are also available. The first is

Py < 1+ ((r|+K—1)UK - ZVK)/Kn

and the second is that if 2V, < (Kil)UK;

vﬁ;ﬁm.pK <1-2 (K*"I)UK - Yy
C (K-K*) (K-K*+1)

where K* + K - 1 is the largest integer in ZVK/UK.

\
What thesekresu]ts mean is that we can estimate quantities that in-

dicate whether pk_is large or small. fFor exam51ey*suppose the right
side of the third to last inequality is estimated to be .9, and that

2V < (n+K-2)U

k-1 S kel This does not yield an exact estimate of o,

but it does say that pk'is estimated to be least .2. Thus, this would
indicate that the overall test is fairly accurate. If, for example,
the above inequalities indicate that Py < .95 and Py 3,.1, this does
not give very useful information about whether Pk is reasonably large.

If P S .1 we have a poor test.

O ‘ 2{/'1»1;
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Estimating the Proportion of Items an

Examinee Knows

It is a simple matter to extend previous results to situations when
a single examinee responds to items randomly ;ampled from some item domain.
For example, 1et‘g% be the probability of a correct response on the iEﬂ
attempt of a randomly sampled iteml Let yi(i=0, ... , t=1) be the propor-
tion of it;ms for whiqﬁ thé examinee can eliminate i distractors. It is
gssuﬁed that each item has at least one effective distractdr, SO y4_q1 1S
the pgpportion of items the examinee knows. It follows that

t-i

q:.= ) yi/(t-1)

1 J-_-O J

which is the same as equation (2.0) where Ps and ¢; are replaced with

q; and Y- In fact, all previeus results extend immediately to the present

case.

Criterion-Referenced Tests

+

A common goal of a criterion-referenced test is to sort examinees
‘ ~

into two catégories. (See Hahb]eton et al., 1978a; Berk, 1980; and the

1980 special issue of Applied Psychological Measurement.) Frequently

these categories are defined in terms of some true score, and here the
true score of interest is yt_l;\the proportion of items in an item do-
main that an examinee knows. The goal is to determine whether Yio1 is

larger or smaller than some predetermined constant, say v'.




It is known that guessing can seriously affect the accuracy of a
criterion-referenced test (van den Brink and Koele, 1980). Moreover,

assuming random guessing can be highly unsatisfactory (Wilcox, 1980c). )
Another advantage of the AUC scoring model is that it substantially re-‘ |
duces this problem (w11c04;,1n press, b). For some results on comparing

Yeop tO y'.whéh equivalent items are available, see Wilcox (1980a).

Seguential and Computerized Testing

In certajn 'situaticns, such as in computehized testing, sequential
procedures will be convenient to use. Some progress has been made in
this area, but much remains to be done.

Suppose an e*aminee fesponds to items randomly sampied from an item
domain and presented on a computer terminal. Further suppose the examinee
responds according to an AUC scoring procedure. A typical sequeﬁtia] pro-
cedure for this situation is to continue séhpling until there are n items
for which the examinee gives a correct response on the first attempt. Let
iz (i=1, ... , t) be the number 6f items for which the examinee requires
i attempts to get the correct response. For the sequential procedure just
described, sampling continues until yq = in which case the joint prob-

) Y
ability function of Yos <o+ 5 Yg is negative multinomial given by

L

Y
A
J I

=3

f(yz,...,yt[ql,...,qt) = nr(yq) 1_

t
where yg = ) Yis and for i > 2, y; = 0,1,.

i=1

The problem with the sequential procedure just described is that with

_UE
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positive probabi]ity, the number of sampled items will be too large for
practical purposes. This might be an extremely rare event, but it is
desirable to avoia this possibility all together. A solution to this
problem is to use a closed sequential procedure where sampling continues

until Yy=hys OF Y5=Nps etc. where Nps---shy are pogitive integers chosen

. by the investigator. In this case the joint probability function of

Yps-reo¥y 18 ‘ )

t Y;

where I is the usual indicator function given by

I 1,if y.=n;
[y.=n.] = o
i 0, if otherwise
For the special case n1=n2=...=n, the probability function becomes
t A
nrlyg) I Py /¥yt
i=1l

which has the same form &s the negative multinomial except that for some
I, yj=n, and 0 < ¥y s n-1, i#J.

The maximum likelihood estimate of q; is 51 = yi/YO’ so the maximum
likelihood estimate of‘yt_l, the proportion of items an examinee knows, is
;t—l = al - az’(Zehna, 1966). If the model is assumed to hold, ;t—l may
not be a maximum 1ike1ih6od e§timate. Instead one would e§£imate Yio1 to

be zero when ;t-l 0; if the estimates of g (i=1,...,t) do not satisfy

1A

the inequality 9

tv

9y 2 -+ 2 Gy apply the pool-adjacent-violators algorithm

(Barlow et al., 1972).

_Uy
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o

Wilcox (in press) shows that if the goal is to compare v to the

known constant y', as in criterion-referenced testing, and if Yio1 2 v'

is decided if and only if ;t—l > y' the sequential and closed sequential

procedures have the same level of accuracy. Moreover, it appears that
the closed sequential procedures nearly always improves upon the more

conventional fixed sample approach. More recently Wilcox (1982f) pro-
posed two tests of q1=...=at, and methods of determining the moments of

the distribution were also described.

A Strong True Score Model

Strong true score models attempt to relate a population of examinees
to a domain of items. In many situations an item domain does not exist
de facto, in which case st;ong true score models attempt to find a family
of probability functions for describing the observed test scores df any i
examinee, and simultaneously to find a distribution that can be used to
describe the examinees' true score.

Perhaps the best known model is the beta-binomial. If y is the number
of correct responses from an-gxaminee taking an n-item test, it is assumed
that for a specific examinee,\the probability function of y is;

(;J ¢’ (1-q)"Y

For the population of examinees, it is assumed that the distribution of

-
NS

1
i

q 1is given by

g(q) = %%;%%%gy ¢! (1-q)%7!




where r > 0 and s > 0 are unknown parameters that are estimated with ob-
" served test scores. Apparently Keats (1951) was the first to consider
this model-in mental test theory.

The beta-binomial model has certain theoretical disadvantages, but
experience éuggests that it frequently gives good results with real data.
A review of these/resultsgis given by Wilcox (1981d). However, the modef
doe;‘not always give a good fit to data, and some caution should be exer-
cised (Keats, 1964). In the event of a poor fit, a gamma-Poisson model
might be considered (Wilcox, 1981d). °

When the’beta—binomial is assumed, many mgasurement problems can be
solved. These include equating tests by the equipercentile method, es-
timating the frequency of observed scores when a test is lengthened, and
‘estimating the effects éf selecting individuals on a fallible measure
(Lord, 1965). Other applications include estimating the reliability of
a criterion-referenced tesf (Huynh, 1976a), estimating the accuracy of
a criterion-referenced test (Wilcox, 1977c), and determining passing
scores (Huynh, 1976b).

A problem with the beta-binomial model is that it ignores guessing.

Attempts to remedy this problem are summarized by Wilcox (1981d), but

all of these solutions now appear to be unsatisfactory in most situations. f
This is unfortunate because it means that a §1ight1y more complex model |
must be used. More recently, however, Wilspx (ii982a, 1982b) proposed |
a generalization of the beta-binomial modei‘that takes guessing into

account, and which gives a reasonably good fit to data.

205 | BN
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Some Miscellareous Applications-of Latent Structure Models

Several applications of latent structure models have already been
described, and there are several other situations where they may be use-
ful. For exampfe, Ashler derives an expression for the biserial corre-
lation coefficient that includes g, ;s the proportion of examinees who
‘\Rnow an item. Wilcox (i9829)discusses how to empirica11y deiermine the
number éf distractors needed on a multiple choide test item, and Knapp
bl977) discusses a reliability coefficient based on the latent state
po}nt of view. (See also Frary, 1969.) Macready and Dayton (1977)
"i11usirate how the models can be used to determine the number of equiv-
alent items needed for measuring an instructional objective, and Emrick
(1971) shows how the models might be used to determine passing scores.
Note that Emrick's estimation procedure is incorrect (Wilcox and Harris,
1977), but this is easily remedicd using the estimation procedures al-
ready mentioned; closed form estimates are given by van der Linden

(1981).

5. POSSIBLE EXTENSIONS AND CONTROVERSIAL ISSUES

The AUC models assumed that examinees eliminate as many distractors
as they can and then guess at random from among the alternatives that
remain. A recent empirical investigatﬁon suggests that the random guess-
ing portion of this'éssumption wf]] usually give a reasonable approxi-
mation of reality (Wilcox, 1982k). No doubt there will be cases where
this assumption is unténab]e in which case there are no guideTines'on

how to proceed.
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A theoretical[advantage of the latent structure model based on
equivalent or hierarchically related items is that they included not
only gUesgivg, but errors such as Pr(incorrect response|examinee knows ).
The practical implications of this are not well understood.

Wilcox (1981a) mentions that under an item sampling model for AUC
tests, an examinee with partial information can improve hisfher test
score by choosing a response, and if it is incorrect, de]iberage]y
choose another incorrect response. Thus, if (yl—yz)/n is used‘%Q esti-
mate ¢, _;, the estimate would be higher for such an examinee becébse'
Yo is lower. Four points should be made. First, this problem can be
partially corrected by estimating the qi's with the pool-adjacent-
violators algorithm (Barlow et al., 1972, pp. 13-15). Second, if an
examinee is acting as descriped, it is still possible to correct for
guessing by applying the true score model proposed by Wilcox (1982a).

If it gives a good fit to data, estimate p; to be ql—(l—ql)g(ql).

The third point is that there is no indication of how serious this prob-
lem might be. Finally, a new scoring procedure is being examinedvthat
might eliminate the problem. . ! ;

It has been argued (e.g., Messick% 1975) that tests should be homo-
geneous in some sense. Frequently this\means that at a minimum, a test
should have a single factor. A suff;cient condition for the best known
latent trait models (see e.g., Lord, 1980; Wainer et al., 1980; Hambleton
" et al., 1978b; Choppin, this volume) is that this assumption be met

N 7
(cf. McDonald, 1981). In general, the latent structure models described
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in this paper do not require this assumption: One exception is the equiv-

alent item model. (See Harris and Pearlman, 1978.) The point is that

* in this paper, no stand on this issue is needed, i.e., it is irrelevant

whether a test is homogeneous when applying, say, the answer-until-
correct scoring procedure, or the corresponding strong true-score model .
Wainer and Wright (1980) and Mislevy and Bock (1982) have studied
the effects of guessing on latent trait models, but these investigations
do not take into account the results and type of guessing described
here. If guessing proves to be a problem, perhaps latent class models

can be of use when latent trait models are applied.




6-29

REFERENCES

° ’

Baker, F. B., & Hubert, L. J. Inference procedures for ordering theory.

Journal of Educational Statistics, 1977, 2, 217-233.

Barlow, R., Bartholomew, D., Bremner, J., & Brunk, H. Statistical

inference under order rgstrictions. New York: Wiley, 1972.

Berk, R. Criterion-referenced measurement. Baltimore: The Johns

Hopkins University Press, 1980.
Bliss, L. B. A test of Lord's assumption regarding examinee guessing
behavior on multiple-choice tests using elementary school students.

Journal of Educational Measurement, 1980, 17, 147-153.

Bowman, K., Hutcheson, K., Odum, E., & Shenton, L. Conments on the dis-

tribution of indices of diversity. In G. Patil, E. Pielou, and

W. Waters (Eds.) International Symposium on Statistical Ecology,
Vol. 3. University Park: Pennsy]vania State Press, 1971.

Chacko, V. J. Modified chi-square test for ordered alternatives.
Sankhya, 1966, Ser. B, 28, 185-190.

C1iff, N. A theory of consistency of ordering-generalizable to tailored

testing. Psychometrika, 1977, 42, 375-399.

Coombs, C. H., Milholland, J. E., & Womer, F. B. The assessment of par-

. tial information. Educational and Psychological Measurement, 1956,

16, 13-27.
Cross, L. H., & Frary, R. B. An empirical test of Lord's theoretical
results regarding formula-scoring of multiple-choice tests.

Journal of Educational Measurement, 1977, 14, 313-321.

213




6-30

Dahiya, R. C. On the Pearson chi-squared goodness-of-fit test statistic.
Bjometrika, 1971, 58, 685-686.
Dayton, C. M., & Macready, G. B. A probabilistic model for validation

of behavioral hierarchies. Psychometrika, 1976, 41, 189-204.

Dayton,fC. M., & Macready, G. B. A scaling model with response errors

and intrinsically unscalable respondents. Psychometrika, 1980, 45,

343-356.

Emrick, J. A. An evaluation model for mastery testing. Journal of Edu-

cational Measurement, 1971, 8, 321-326.

Frary, R. B. Reliability of multiple-choice test scores is not the

proportion of variance which is true variance. Educational and

Psychological Measurement, 1969, 29, 359-365.

Goodmah, L. A. On the estimation of parameters in latent structure

ana]}sis. Psychometrika, 1979, 44, 123-128.

Hambleton, R. K., Swaminathan, H., Algina, J., & Coulson, D. B. Criter-

1 :
ion-referenced testing and measurement: A review of technical //‘\\\—

. \
issues and developments. Review of Educational Research, 1978, 48,

1-48. (a)
Hambleton, R. K.,“Swaminathan; H., Cook, L. L., Eignor, D. R., Gifford,
J. A. Developments in latent trait theory: Models, technical

v

jssues, and application. Review of Educational Résearch, 1978, 48,

467-510.
Harnisch, D. L., & Linn, R. L. Analysis of item response patterns:
Questionable test data and dissimilar curriculum practices.

Journal of Educational Measurement, 1981, 18, 133-146.

214

'
\




Harris, C. wl, Houang, R. T., Peariman, A. P., & Barnett, B. Final
report submitted to the National Institute of Education. Grant
No. NIE-G-78-0085, Project No. 8-0244, 1980.

" Harris, C. W., & Peariman, A. An index for a domain of completion or

short‘answer jtems. Journal of Educational Statistics, 1978, 3,

265-304.
Hartke, A. R.' The use of latent partition analysis to identify homogen-

eity of an item population. Journal of Educational Measurement,

1978, 15, 43-47.
Huynh, H. On the re]iabi]ify of decisions in domain-referenced testing.

Journal of Educational Measurement, 1976, 13, 253-264. (a)

Huynh,.H. Statistical consideration of mastery scores. Psychometrika,

1976, 41, 65-78. (b)
Kale, B. K. On the solution of 1ikelihood eéuatfons by iteration pro-
cesses. The multiparametric case. Biometrika, 1962, 49, 479-486.

Keats, J. A. A statistical theory of objective test scores. Melbourne:

A.C.E.R., 1951.
Keats, J. A. Some generalizations of a theoretical distribution of mental

test scores. Psychometrika, 1964, 29, 215-231.

Knapp, T. R. The reliability of a dichotomous test item: A correlation-

less approach. Journal of Educational Measurement, 1977, 14, 237-252.

Lord, F. M. A true-score theory, with appfications. Psychometrika, 1965,
30, 239-270.

Lord, F. M. Applications of item response<ﬁﬁeogy to practical testing

problems. Hillsdale, New Jersey: " Ef1baum, 1980.

R15




Macready, G. B., & Dayton, C. M. The use of probabilistic models in the

assessment of mastery. Journal of Educational Statistics, 1977, 2,

99-120.

Maréha]],'A. W., & Olkin, I. 1Inequalities: Theory of majorization and

its applications. New York: Academic Press, 1979.

McDonald, R. P. The dimensionality of teéts. British Journal of Mathe-

matical and Statistical Psychology, 1981, 34, 100-117.

Messick, S.. The standard problem: Meaning and values in measurement

and evaluation. American Psychologist, 1975, 30, 955-966.

Mislevy, R. J., & Bock, R. D. Biweight estimates of latent ability.

Educational and Psychological Measurement, 1982, 42, 725-737.

Molenaar, I. On Wilcox's latent structure model for guessing. British

Journal of Mathematical and Statistical Psychology, 1981, 34, 79-89.

Robertson, T. Testing for and against an order restriction on multinomial

parameters. Journal of the American Statistical Association, 1978,
73, 197,202.

Robertson, T., & Wright, F. T. Likélihood ratio tests for and against

o a- stochastic ordering between/mu]tinomia] populations. Annals of
Statistics, 1981, 9, 1248-A257+—__

Sathe, Y. S., Pradhan, M., & Shkh, S. P. Inequalities for the probability

of the occurrence of at ledst m out of n events. Journal of‘App]ied

Probability, 1980, 17, 112741132.
Simpson, E. Measurement of diversity. Nature, 1949,.163, 688.




Smith, P. J., Rae, D. S., Manderscheid, R., & Silberg, S. Exact and

appro-imate distributions of the chi-square statistic for

Communications in Statistics--Simulation and,

equiprobability.
Computation, 1979, B8, 131-149.
van den Brink, W. P., & Koele, P. Item sampiing, guessing and decision-

making in achievement testing. British Journal of Mathematical and

Statistical Psychology, 1980, 33, 104-108.

van der Linden, W. Estimating the parameters of Emrick's mastery test-

ing model. Applied Psxpho]dgica] Measurement, 1981, 5, 517-530.

Wainer, H., Morgan, A., & Gustafson, J. A review of estimation procedures
for the Rasch model with an eye toward longish tests. Journal of

Educational Statistics, 1980, 5, 35-64.

Wilcox, R. R. Estimatipng the Tikelihood of false-positive and false-

negative decisions in mastery testing: An empirical Bayes approach.

Journal of Educational Statistics, 1977, 2, 289-307. (c)

Wilcox, R. R. Determining the length of a criterion-referenced test.
\

\
Applied Psychological Measurement, 1980, 4, 425-446. (a)

Wilcox, R. R. Some results and comments on using latent structure models

to measure achievement. Educational and Psychological Measurement,

1980, 40, 645-658. (b)

wilcox, R. R. An approach to measuring the achievement or proficiency

of an examinee.

Wilcox, R. R. Solving measurement problems with an answer-un?i]—correct

scoring procedure. Applied Psychological Measurement, 1981, 5,

399-414. (a)

Applied Psychological Measurement, 1980, 4, 241-251. (c)




Wilcox, R. R. A review of the beta-binomial model and its extensions.

Journal of Educational Statistics, 1981, 6, 3-32. (d)

Wilcox, R. R. Some empirical and theoretical results on an answer-until-

correct scoring prb;edure. British Journal of Mathematical and

¢
—__ Statistical Psychology, 1982, 35, 57-70. (a)

Wilcox, R. R. Some new results on an answer-until-correct scoring pro-

cedure. Journal of Educational Measurement, 1982, 19, 67-74.

Wilcox, R. R. Approaches to measuring achievement with an emphasis on
1atenf structure models. Technical Report, Center for the Study,
of Evaluation, University of California, Los Angeles, 1982. (c)
Wilcox, R. R. Bounds on the k out of n reljability of a test, and an -

exact test for hierarchically related items. Applied Psychological

o Measurement, 1982, 6, 327-336. (e)
Wilcox, R. R. On a closed sequential procedure for categorical data,

and tests for equiprobable cells. British Journal of Mathematical

and Statistical Psychology. 1982, to appear. (f)

Wilcox, R. R. Using results on k out of n system relijability to study

P
and characterizd tests. Educational and Psychologica]l Measurement,

1982, 42, 153-165. (9) ,
Wilcox, 'R. R. An approximation of the k out of n reliability of a test,

and a scoring procedure for determining which items an examinee

knows. Center for the Study of Evaluation, University of Ca]ifbﬁniaq—f—._m_____;:

[N

Los Angeles, 1982. (J)




14

Wilcox, R. R. How do examinees behave when taking multiple-choice

tests. Applied Psychological Measurement, 1982, to appear.k (k)

Zehna, P. W. Invariance of maximum 1ikelihood estimation. Annals of

Mathematical Statistics, 1966, 37, 744.




GENERALIZABILITY THEORY

. Noreen Webb
University of California, Los Angeles

Definition and Focus

Generalizability theory evolved out of the recognition that the
concept of undifferentiated eror in classical test theory provided too
gross a characterization of the multiple sources of error in a
measurement. The multidimensional nature of measurement error can be
seen in how a test score is obtained. For example, one of many
possible test forms might be admiistered on one of many possible
occasions by one of many possible testers. Each of these
choices--test form, occasion and tester--is a potential source of
error. G-theory attempts to assess each source of error in order tt
characterize the measurement and improve its design.

A behavioral measurement, then, is a sample from a universe of
admissible obsrvations characterized by one or more facets (e.g.,
test forms, occasions, testers)l. This universe is usually defined by
the Cartesian product of the levels (called conditions in G-theory) of
the facets. From this perspective, Cronbach et al. (1972, p. 15) say:

| fhéfscpre,on which the decision is to bé based is only one

of many scores that might serve the same purpose. The

decision maker is almost never interested in the response

given to the particular stimulus objects or questions, to

the particular tester at the particular moment of testing.

Some, at least, of these conditions of measurement could be

altered without making the score any less acceptable to the

decision maker. That is to say, there is a universe of
observations, any of which would have 'yielded a usable basis

T Tntroduction to G-theory are provided by Brennan (1977a, 1979a)
Brennan and Kane (1980), Cronbach et al. (1972), Erlich and
Shavelson (1976b) Gillmore (1979) Cardinet and Tourneur (1978),
Huysamen (1980), Shavelson and Webb (1981), Tourneur (1978),
Tourneur and Cardinet (1977), Van der Kamp (1976), and Wiggins

(1973).
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for the decision. The ideal datum on which to base the
decision would be something like the person's mean score
over all acceptable observations, which we shall call his
"universe score." The investigator uses the observed score
or some function of it as if it were the universe score.
That is, he generalizes from sample to universe. The
question of "reliability" thus resolves into a question of
accuracy of of generalization or generalizability.

Since different measurements may répresent different universes,
G-theory speaks of universe scores rather than true scores,
acknbw]edging that there afe differenf universes to which decision
makers may generalize. Likewise the theohy speaks ofﬁ
genera]izabi]ity coefficients rather than the reliability coefficient.
realizing that the value of the coefficient may change as.definitons
of universes change.

G-theory distinguishes a decision (D) study from a

generalizability (G) study. This distinction recognizes that certain

studies are associated with the development of a measurement procedure
(G’studies) while other studies then apply the procedure (D studies).
A]thohgh the decision-maker must begin to plan the D study before
conducting the G study, the results of the G study will guide the
sﬁecification of the D.study. In planning the D study, ‘the decision‘
maker (a) defines the universe of generalization and (b) specifies his
proposed interpretation of a measurement. These plans determine (c)
the questibns to be asked of the G study data in order =2 optimize the
measurement design. Each of these points is considered in turn.

(a) G-theory recognizes that the universe of admissible

observations encompassed by a G study may be broader than the universe

to which a decision maker wishes to generalize. That is, the decision

maker proposes to generalize to a universe comprised of some subset of

R21 |
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" the facets in the G study. The_universe is called the universe of

generalization. It may be defined by reducing the universe of
admissible observations, i.e. by reducing the levels of avfacet
(creating a fi*ed facet; cf. fixed factor in ANOVA) by selecting and
thereby controlling one level of a facet, or by ignoring a facet. Al
three alternatives have consequences for the estimation of the
components of error variance that enter‘into the observed score
variance. ‘

(b) G-theory recognizes that decision makers use the same test
score in different ways. For example, some interpretations may focus
on individﬁa] differenes (i.e., relative or comparative decisions)\i
some may use the observed score as an estimate of a person's universe
score (absolute decisions; cf. criterion-referenced,interprétations),
while still others may use the observed score in a regression estimate
of the un1verse score (cf.Kelley's, 1947, regression estimate of true
scores). There ijs a different error asch1ated with each of these

he \
proposed interpretations.

To illustrate the distinction between relative and absolute
decisions, suppose that a decision is to be made using scores on an
lobjective test of arithmetic. As an example of a relative decision, a
decision-maker might want to cHannel tHe top 20 percent of the scorers
into an above-average academic track (regardless of their actual
scores). In thfs case, if all items on the test rank students in the

same way, even if some items are more difficult than others, it would

not matter to a student whigh items he or she received. The same
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students would be sc ected for the accelerated track whether the test
consists of easy items or difficult items. In more formal terms the
variation in item means would not be a part of error. As an example
of an absolute decision, a decision-maker might want to select for
acceierated placement all students who answer correctly 75 percent or
more of the items on the test. In this case, the variation in item
means would contribute to error. Even if all items rank students in
the same way, a test composed of easy itgps would p]acg more students
into the accelerated program than a test composed of difficult items.
(c) Ordiharily, the universe of admissible observations in a G
study is defined as broadly as possible within practical and
theoretical constraints. In most cases Cronbach et ai. recommend
using a crossed G study design 50 that all sources of error and
interactions among sources of error cén be estimated. (It should be
noted, however, that a nested G study is sometimes useful because it
provides more degrees of freedom for some estimates of soﬁrceé of
error.) The design of D studies, on'the other hand, can vary widely
and include crossed partié]]y nested, and compTete]y nested designs.
Ofteq, in D studies, nested designs are used for convenience, to
reduce costs, for increasing sample size, orfor a combination of these

reasons. All- facets in the D study design may be random or only some

Cot

may be random.




Development of the Model

Scores and variance components. In G-theory a person's score is

decomposed into a component‘for the universe score (Up ) and one or
more error components. To illustrate this decomposition, we consider
the simplest case for podagogical purpeses--a one facet, p x i (person
by, say, item) designf (The object of -measurement, here persons, is
not a source of error and, theréfore, is not a facet.) The
presentation readily generalizes to more complex designs. In the p Xx
i design with generalization over all admissible items taken from an
indefinitely 1argé univese. the score for a particular person (p) on a

particular form (i) is:

Xpi = u {(grand mean)
(1) o toup oo (person effect)
oM - (item effect)
+ Xpi Tup T My (residual)

Since this design is crossed all persons receive the same items.
Except for the grand mean, each score component has a distribution.
Considering all persons in the population, there is a distribution of

Mp " u with mean zero and variance eu. - u)2==o§ which is called

P
the universe-score variance and is analogous to the true-score

~

variance of classical theory. Similarly, the component for item has
mean zero and variance gﬁH -y )2 = d? which indicates the variance
of constant errors associated with items while the residual component

. . 2 . . . .
has mean zero and variance °pi e which indicates the person x item
. ’ -




interaction confounded with residual error, since there is one

observation per cell. The collection of observed scores. Xpj has a
Lo 2 . .

variance of oy = £ (Xpi -1)2 which equals the sum of the variance

pi
components:

2 2 02 02
(2) % . =% + % + %i,e

Q

G-theory focuses onrthese variance compbnents They are
estimated by means of a gengra]izabi]ity (G) study. The relative
; magnitﬁdes of the components prqvide information about particular
sources of error ipfluencing a ﬁeasurement. It is convenient td
estimate variance components from an ANOVA of sample data. Numerical
estimates of the variance components are obtained by sgtting the
expected mean squares equal to the observed mean squares and solving

the set of simultaneous equations as shown in Table 1.

Table 1

Estimates of Variance Components for a
One Facet p X i Design

Estimated
Source of Mean Expected Varianced
Variation Square Mean Square* Component

2 2 ~2
Person (p) MSp i et Mi% op = (Msp'MSre:)/ni
. 2 2 ~2 _ X
ttem (i) MS; °pi,e+ LIS oy = (Msi'MSres)/"p
o . 2 ~2 _ .
- pi,e MSras opi,e Spie MSres

*nj = number of items; np = number of persons.

IText Providad by ERIC.




Estimation of eer¥, Not "only do the magnitudes of the variance

components show ‘the importance of each source of error in the
measurement, they can be used‘to'estimate the total error for relative

and absolute decisions. For relative decisions, the error in a p x i

design is defined as:

(3) Sp1 ~ (X = wp) = Loy =wds

pl p

where I indicates that an average has been taken over the levels of
facet i under which p was observed. The variance of the errors for

relative decisions is:
(4) P O /n}.',

where nj' indicates the number of conditions of facet i to be sampled

in a D study. Notice that (a) Gii e/n1.' is the standard eror of the

mean of a person's scores averaged over the levels of i (items in our

example). And (b) the magnitude of the error is under the control of

2
the decision maker in.the D study. In order to‘reduceb0 s> i may be

increased. This is ana]égous to the Spearman-Brown prophecy formula
in classical theory and the standard error of the mean in sampling

theory.

For absolute decisions, the error is defined as:

(5) A =X . -u

pl pI  "p
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The variance of these errors in a p x i design is:

' 2 .2 . 2 _ 2 2
(6) A 1+°p1“"1/”1+°p1,e/"1 )

Q
i
Q

In contrast to 0§= 0iinc]udes the variance of constant error§_
associated with facet i (o? ). This arises because, in abso1ute"
decisions, the difficulty of the particular items that a person
receives will influence his observed score and, hence, the decision
maker's estimate of his universe score. For relative decisions,
however, the effect of item is constant for all persons and so does
not influence the rank ordering of them (see Erlich & Shave]son,
1976b).

Finally, for decisions based on the regression estimate of a

person's universe score, error (of estimate) is defined as:

(7) Ep = up - ¥ L)

where ;p is the regression estimate of a person's universe score, .
The estimation procedure for the variance of érrors of estimate may be
found in Cronbach et al. (1972, p. 97ff).

The variance components from a crossed p X i G study design can
also be used to estimate error in a nested D study design with items
nested Qithiﬁ persons (we wrife i:p to denote nesting). So, the
efféct of-the constant errors associated with facet i is confounded

with the effect associated with the person by i-facet interaction

(pi,e). Hence,

R27.




Note that, for a completely nested design, o§ =foi .

Genera]izabi]jty coefficients. While stressing the importance of

variance components and errors such as Gi ,fgenera1izability theory
also provides a coefficient analogous tb the re]iabi]it} coefficient
in classical theory. A generalizability (G) coefficient can be
estimated for each of a variety of D study designs'using the estimates
of variance components and error produced by the G study. A
decision-maker can then use the estimated G coefficients to choose
amdng the?D study designs. For the one-facet case described here, °
generalizability coefficients can be'éstimated for crossed or nested D
study designs with any number of items. For designs with more than
one facet, there are many D study designs possible.~each with an
estimafed G coefficient. | ‘

The generalizatility (G) coefficient, gpz, for relative
decisi ns‘is defined as tﬁe fﬁtiq of the universe—scére variance to

the expected observed-score variance. i.e., an intraclass correlation:

02 02
(9' Epz_-:—;L - P
! 2 2 2
Eo (x) 0p+0<3

i

The expected observed-score variance is used in G-theory because the

theory assumes only’ random sampling of the levels of facets and so the

o 228
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observed-score varfiance may change from one application of the design
‘to another. Sample estimates of the parameters in (9) are used to

estimate the G coefficient:

(92) O
b 7= g

~

Epz js a biased but consistent estimator of gpz.
For absolute decisions a generalizability coefficient can be

defined in an analogous manner: 2

¢
(10) % and

(10a) gp2 = b

Finaf]y, note that, for completely nested designs regardless of
whether relative or absolute decisions are to be made, error variance
is defined as Gi and so (10) provides the generalizability coefficicnt

!

for such'designs.
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A two-faceted example. A study of the dependability of measures

of mathematics achievement illustrates the theory's treatment of
multifaceted measurement error. In designjng a generalizability (G)
study, the decision-maker specifies possible sources of error in the
measurement of mathematics achievement. 'Variab1i1ity across test
items is clearly a po§fib1e source of error. Furthermore students
may obtain different scores on multiple occasions even though no
learning has taken place between occasions, so occasions is a possible
source of error.” (It is assumed that true ability is constant from
one occasion to the next. Therefore, a time interval between
occasions must be selected that is short enought to prevent true
changes from taking place--learning or maturation--but is long enough
to prevent students' memory of the test from influencing their
scores.) Another source of error might be item format, such as
%m]tip]e choice, trué—fa]se, or open-answer (student fills in the
correct answer): Students' scores might differ across item formats.
‘For the present illustration, the item and occasion sources of error
will be considered.

.1?16 the generalizability study, thirty tenth-grade students (p)
were administered a twenty-item (i) test on two occasions (ij)- In

differentiating students with respect to mathematics achievement,

" errors in the measurement may arise from inconsistencies associated

with items, occasions, and other unidentified sources. G-theory
incorporates these potential sources of error into a measurement model
and estimates the components of variance associated with each source

of variation in the 30 x 20 x 2 (p x 1 X j) design.

¥

|
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Table 2 enumerates the sources of variation and presents the

estimated variance components for the mathematics test.

k\

Table 2

Generalizability of Measures of Mathematics Achievement

Estimated Variance Components

Source of
Variation ni‘'=1,nj'=1 n;'=10,nj"'=1 n1'=10,nj'=2\\\
\\
Students (P) 7.55 7.55 7.5
Items (I) 1.73 .17 .17
Occasions (J) .96 .96 - .48
. PI : 5.42 .54 : .54
* PJ .71 <71 .36
IJ . .50 .05 .02
Residual (PIJ,e) 4.88 ,+49 .25
a2 , |
: 6 ]]-Ol 1.74 1‘15 ' ’w
G coefficient for relative decisions .39 .81 .87 /
52 ‘
A : 14.20 2.92 1.82

G coefficient for absolute degcisions .35 .72 .81

The first column shows that three estimated variance componehts are
large relative ‘to the other components. The tirst, for students (o; )
is analogous to true score variance in classical test theory and is

expected to be large. The second, the student by item interaction (ogi)
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represents one source of measurement error ‘and is due to the tendency
of different items to rank students differently. The third is the ‘
residual term representing the three-way interaction between students,
itemse ang occasiors and unidentified sources of measurement error
(csijle).\\The small components associated wth occasions (the J, Pd,
IJ components) suggest that the occasion of ?esting introduces little
variablility into the measurement of mathematics achievemert. Average
sFudent performance over items is similar across occasions (5§ )3
students are ranked nearly the same across occasions (st

~ |
means are ordered nearly the same across occasions (c%j )- \The

); and item

optimal D study design then, will include multiple test items but few
ocasions.

Table 2 also gives estimated variance components, error, and
generalizability coefficients for three D study designs: one item and
one occasion, ten items and one occasion, and ten items and two
occasions. Information is presented for both relative and absolute
decigions. As described earlier, a relative decision might be to
select the top 20 percent of the scorers for a special program. The
»variance compongntS’contibuting to error in this case include the
components for all interactions with persons: PI, PJ, and PIJd,e.
These are the only components that influence the rank ordering of
students. An absolute decision might be to select all students who
obtain a score of 75 percent correct or better. The error in this
case consist# of a]!ACOmponents except that for students: I, J, PI,
JP, IJ, and ﬁIJ,e. A1l of these components influence students'

LR N
absolute level of performance. As the estimates of error and




<

4genera]izabi]ity coefficients in Table 2 indicate, administering a
ten-item test on one occasion would substantially reduce error over a
single item. Increasing the number of occasions to two would reduce
error by only a small amount. The small reduction in error may not
’ warrant the extra time and expense involved in administering the test -
tWJce. | : |

. ¢

Typ1ca11y, several D study designs w111 yield the s@me level of

generalizability. For a dec151on—maker.whg‘de51res a generalizability
coefficient (relative decision) of 87 “for example, there are at
1east two D study designs to choose from. As indicated in Table 2,
ten items administered on two occasions wou]d be erpected to produce
this level of generalizability. Alternatively, 25 items administered
on one occasion would also produce this resu.t. The decision-maker
must balance cost considerations to choose ;he appropriate D study
design. When items are difficuit and expens1ve to produce, the former
design-m € more pract1ca1 When items are fairly easy to generate-
(as is probably the case in tests :f mathematics acpievement), the
latter design may be preferable. |
Assumptions Lo

Lack of restrictions. Before discussing the assumptions

underlying the generaiizabi]ity model andlprbcedures, it is
instructive to describe which-assumptions and restrictions occurring;
in other measurement.theOries (for examp]e, classical theory) are not
heid\in generalizability theory. »First, generalizability theory
aQoids the classica] assumption of;paralieiism: equal means,

g variances and 1ntercorre1ations anong conditions of a facet (for

i

example,. item scoces). The lack of these assumptions has 1mp11cations

. e “,iusuf 4 Wl£3:3j3wwuﬂ.ﬂ.: e 1uf,},%”amhwun‘ﬂpimb




for the interpretation of the resu]ts~of G and D Studies. One -cannot

assume that cond1t10ns samp]ed w1th1n a facet are equ1va1ent For

-

examp]e, one cannot assume that 1tems samp1ed foq a stugy have the
same meanhs, variances and 1ntercorre1at1ons. Furthermore cond1t1ons

: o \
o e . : \ .
sampled across studies cannot. be assumed'to be equ1va1ent. For

'examp]e the ttems se]ected for the G study may not have the same
]eve] of d1ff1cu1ty as those se]ected for the D study Moreover, the
jtems in one D study may not'be equivalent to those selected for

. e I\ .

another D study. The differences among conditions and between sets of
. : 3 v - 3 R
conditions may-be due to chdracteristics of examinees as well as

- . N

character1st1cs of items. ;

.

To deal with the d1ff1cu1ty that one’ set of conditions sampled in
a D study (for example items or ocras1ons) may not be equ1va1ent to
each other or to another set Cronbach et al.. (1972) discuss an
item-sampling design proposed by Lord’ and Novick (1968). In this
p]an,va large sample of perSOns is subinided at random into three or
more subsamp]es. In the G study, each subsample would be observed
inder thewset of cod1t1ons to be sampled in the D study and one
additional conditdion. [he add1t;ene1 condition would be different for
each subsamp]e. Each subsamp1e, then, would be observed under
identical conditions plus one different condition. A comparison of
the results (variance component estimates) across subsamples would
reveal how well the set -of conditions to be sampled in the D study
represent the universe of conditions. If the results across

subsamples are similar, then one can confidently generalize the

results of the D study to the conditions in the universe of

234 <
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generalization. If the results are different across subsamples, one
must be very cautious in generalizing beyond the condi*ions (for
example, items) sampled in the D study./

Second, the generalizability model makes no assumptions about the

distributions underlying the measurements obtained in the G and D

studies, or of the universe scores. Litt]e is known, however, about

" the effects of different underlying distributions of scores on the

estimates of variance components and the efficiencies of the
estimators. It should be noted that genera]iiabi]ity‘theory does make
assumptions about the distributions underiying variance component
estimation (see next section).

Third, there is no restriction about the kinds of conditions that
can be defined as facets. Any‘source of variation can be defined as a
facet including, for eXambie, test item, test form, item format,
occasion of testing, and test agministrator. Generalizability theory
may be the only way\to disentangle the effects, of these sources of
variation. Item-response models afe not-able to deal with the effects
of administrator variation, for example.

4

Random sampling One of the few assumptions of generalizability

theory is random sampiing of persons and conditions (for random
facets). Although this assumption:is conSiderabiy weaker than the
assumption of classical theory that conditions are strictly parallel

variances, correlations), it has often raised objections

(equal means,.\

from those who maintain that measorements rarely C0nS1St of random
samples from we]]-defined universes of “generalizatien (for examp]e,
Loevinger, 1965; Rozeboom, 1966; Gillmore, '1979). As Kane (1982, |
p. 30) points out, “The effedtﬁﬁoibqnintended departures from the

.t, -

235 ’
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random sampling assumption cannot be evaluated accurately, and
therefore the interpretation of G-study results must always be

somewhat tentative." )
Brennan (1981) sepg a more optimistic tone by suggesting that the

uniVersg of generalization needinot be undifferentiated (as, for
exaﬁp]e, a univerﬁé of test items), but may beastructufed such- that
the assumption of raﬁdom Samp]ing is more acceptable (for example,
sampling from categories representing different item or content
specifications).

Lord and Novick (1968, p. 235) also proQide support for the
random sampling assumption, whiéh is relevant for generalizability

theory:

A possible objection to the item-sampling model (for

example, see Loevinger, 1965) is that one does not

ordinarily build tests by drawing items at randem from a

pool. There is, however, a similar and equally strong

objection to classical test theory: Classical theory £
requires test forms that are strictly parallel, and yet no
one has ever produced two strictly parallel forms for any
ordinary paper-and-pencil test. Classical test theory is to
be considered a useful idealization of situations
encountered with actual mental tests. The assumption of
random sampling of items may be considered in the same way.
Further, even if the items of a particular test have not
actually been drawn at random, we can still make certain
interesting projections: We can conceive an iteﬁ&gopu]ation
from which the items of the test might have been randomly
drawn and then consider the score the examinee would be
expected to achieve over this population. The abundant
information available on such expected scores enhances their
natural interest to the examinee. "




Infinite universe. Related to random sampling assumption

described above is the assumption for random facets that the number of
conditions in the universe of admissible cond1t1ons be indefinitely
large. When the universe (of admissible observations or of ‘
‘generalwzat1on) is f1n1te, the anaT§s1s and 1nterpretat1on need to be
adjusted, depend1ng upon the re1at1onsh1ps among the number of
cond1t1ons sampled in the G study, the number of conditions in the
universe of admissible observations, and the number of conditions in
the universe of gehéra]izaton.' The universe of admissible observatins
comprises all possible combinations of conditions represented in the G
study. The universe of genePalization coneists of those combinations
of conditions over whfth the dec{sion-meker wishes to generalize.
Although the two univ&r es may be the same, the universe of

S

generalization often w%11\be smaller (fewer facets) than the universe
of admissible observations. \For example, a G study with items, test
administrators, and occasions as tacets may show little variability
due to test administrators and occasions but substantial variability
due to items. For the D study, then, the decision-maker may decide to
use one test administrator and administer the test on only one
occasion but use multiple items. The universe of admissible
observations wou1drhave three facets; the universe of generalization
would have one facet. Cronbach et al. (1972) consider several
possibilities of finite universes and describe the implications for
analysis. As Cronbach et al. point out, the intermediate cases in

which a subset of a finite universe of conditions is sampled can be

complex.
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-In most applications, the decision-maker's choice is between
random sampling from an indefinitely large universe (random facet) or
inclusion of all of a finite set of conditions (fixed facet). In the
latter case, Shavelson and Webb (1981) recommend that the

decision-maker examine the variablility of the conditions of the fixed

facet. 'If the variability is small, the scores can be averaged over

conditons of the fixed facet. When the variability is large, hOWeve},
each condition should be treéted separately or the scores should
should be treated as a profile. Whenever there is a question about
the magnitude of the variability, it may be most reasonable to present
the results for each condition separately as well as the average over
the conditions of the facet. This recommendation applies to the D
study as well as to the G study.

Variahce componenté, Generalizability theory assumes that the

distributions underlying variance components are normal and that

" variance components cannot be negative. Analyses of non-normal

distributions of variance components by Scheffe (1959; see Cronbach et
al., 1972, p. 52) suggest that departures from normality can have &

large effect on the "trustworthiness" of the confidence interval

around the variance component.

Negative estimates of variance components can arise as a result
of sampling variability or model misspecification. For example, a
random-effect model may not be valid (Nelder, 1954). Cronbach et al.
(19753 suggest that zero be substituted for negative estimates and
substituted in any expected mean square equation containing that

component. As Scheffe (1959) and others have pointed out, the zero

R_3§
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estimates and modified estimates for other effects are biased. The
greater ;he number of facets in the design (particularly for crossed
designs), the greater the potential for a large number of biased
eétimates of variance components.

The problem of negative estimates of variance components is not
1nsurmountable, however. Cronbach et al. (1972)‘suggest the use of a
Bayes1an approach which not on]y provides a solution to the problem’
of negat1ve estimates, but also provides estimates of variance
components that are interpretable with respect to the sample dataf not
to repeated'sampling. Fyans' (1977; see a]so Box & Tiao, 1973; Davis,
1974; Hi1l, 1965, 1967, 1970; Novick et al., 1971) strategy for
obtaining Bayesian estimates constrains the estimates to be greater

than or equaT to zero. The resulting estimates are biased, however.

~ Limitations of the Procedures

The two major limitations of the procedures of generalizability
theory to be discussed here are the need for extensive data for
reliable estimates of variance components, and the d1ff1cu1t1es of
estimation in unbalanced designs. It should be noted that these
limitations are not weaknesses in the theory but are difficulties
arising in practice.

Sampling variability of estimated variance components. Since

[4
G-theory emphasizes the estimation and interpretation of variance
components, their samp]iﬁg variability is of great importance, albeit

seldom addressed. Two issues arise: a comparison of sampling

“ variability of variance components for di fferent effects ip a design,
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and the magnitude of sampiing errors in studies with moderate numbers
of observations.

Concerning: the first issue, a comparison of sampling variances
for different effects in a G-theory design suggests that the samp]1ng
es;imates of the universe score variance may be less stable than
estimates of components 6f'érror'varian§e. This result derives from
én inspection of.éeﬁera] formulas for sémp]ing variances of estimated
variance c0mpohents (see Smith, 1978). In fully crossed designs, at
least, the formulas for sampling variability of estimated variance
components for main effects contaip hore components, and (for moderate
numbers of persons and conditions) can be expected to yield a larger
sampling variance estimate, than the formulas for higher-order
interaction effects. Ahli11ustrat10n of this result for a two-facet,
crossed {p x i x j), Fandom model design comes from Smith (1978,
Figure 1). The variance of the estimated variance component for

persons (the universe score variance) is

2 02. . 02. 2
var(s2) = (o2 + Py 4 P14 Ores )
P np-] P nj n, ninj
2 2 C g2 2
1 %3 res,2 1 9pi Ires 2 !
+ ( + )+ 1y + )
an—l) n, ninj (ni 1) n, nin;
2
' (res yZ
Tﬁ —1)(n ~1) n1nJ

while the var1ance of the estimated component for the residual is

. : 2 g
2 = *
var(ores) 13p_1)(n1-1)(nj—1) "Ores
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In general, the sampling errors are expected to be greater for designs
with greater numbers of facets than for designs with few faoets, thus
producing a trade-off between band width and fidelity. ’ ~\\\
The second issue concerns the magnitude of samh]ing errors of
estimated variance components. Monte carlo simulations conducted by
Smith (1978 1980), Calkins et al. (1978) and Leoneiand Nelson (1966)
for a variety of crossed and nested des1gns produced 1arge sampllng
"errors for sma]] and moderate numbers of persons and cond1t10ns.
smith, for example, found that "(a) the sampling errors of variance
components are much greater for multifaceted universes than for single
faceted universes; (b) for IGS the sampling errors were large
unless the total number of observattons(npninj) was at.1east 800: (c)
stable estimates of o? and o2 required at least eight levels of

’ i j
each facet; and (d) some nested designs produced mcre stable estimates

¥
than did crossed designs" (Shavelson & Webb, 1981, p. 141). Smith's
results pose a serious problem for the interpretation of results in
the moderately sized designs typically used. The requirements of
large numbers of conditions and large numbers of total observations
for stable estimates of variance components are rarely met in most G
and D studies.

' Woodward and Joe (1973) and Smith (1978) recommended that
measurements be allocated in the D study in specific ways to minimize
sampling variability. For example, in a p X i x j design, they
recommended using equal numbers of conditions of facets i and jIWhen

o2 jncreases relative to o2, and Ssj,ﬂ and making the

res p‘l
numbers of conditions of facets i and j proportional to 62, /cpJ

_ 241 4 ' // ;
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when o decreases relative to o2 and USJ . These decisions

res pi
are based on the results of the G study,

To deal with the requirement of large numbers of observations,
Smith (1980) also proposed the use of sever 1 small G studies with
many conditions of a few facets, each estimating part of a complex G
study, 1nstead of one 1arge G study with a few onditions of many
‘facets - As Shave]son and webb (1981) point out, however, there is a .
quest1on of how’ ne]l the restr1cted un1verses of the several Sma11 G

~studies represent the universe of the single, large G study.

.Unbalanced designs. A major difficulty with the ANOVA approach

to estimating variance components arises in unbalanced designs, in
which there are unequal numbers of observations in its subclassifica-
tions. An example which occurs in many tests is an unequal number of
items across subtests. Another example is students nested within
classes where class size varies. The primary difficulty with
‘unbalanced data is computational complexity. The usual rules for
deriving expected values of mean squares (Cornfield & Tukey, 1956) do
not apply to unbalanced designs. Although computer programs have been
developed to estimate variance components in unbalanced designs, they
require large storage tapacities and, therefore, may be prohibitively
expensive in many cases. (For descriptions of the computer programs,

seeABrennan et al., 1980; Llabre, 1978, 1980; Rao, 1971, 1972.)

Strengths and Weaknesses of the Model

s The major strength of generalizability theory is its ability to
assess sources of error in the measurement and, consequently, to

design optimal decision-making studies. This ability affects not only
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a specific decision-maker's study but, as Cronbach et al. (1972, p.
384) point out, it can help evaluate existing testing practiées:

Application of generalizability theory should operate’

ultimately to increase the accuracy of test

interpretations. It will make interpretation more cautious

as the inadequate generalizability of a procedure becomes

recognized, and it will encourage the development of

procedures more suitable for generalized interpretation.

The weak assumptiohs'afford the decision-maker great flexibility
in designing genéra]izabi]ity'and decision studies, -and in defining
relevant universes of interest. At the same time, however, the lack
of assumptions leaves several questions unanswered. One is the lack
of guide]ines about the reasonableness of data. For example, the

effects of outliers or inf]uentia] observations on the estimates are

not well known.

Present Areas of AppTication

§éiiabi]itx. As was described in the first section of this
paper, a primary goal of G-theory is to design measurement procedures
that minimize error variabiiity, and thereby maximize reliability,
while at the same time allowing the decisidn7maker to generalize over
a broad range of testing sitﬁations. Generalizability theory has been
applied to a variety of\:reas in the behavioral sciences to study the
dependability of me;;ures of the behavior of sghizophrenic patients
(e.g., Mariotto & Farrell, 1979). assertion in the elderly (Edinberg
et al., 1977), free-recall jn/chi]dren (Peng & Farr, 1976), depth and

duration of sleep (Coates et al., 1979), behavior of teachers (Erlich

249




‘ & Shavelson, 1978), dentists' sensitivity toward patients (Gershen,
1976), educational attainment (Cardinet et al., 1976), job
satisfaction using Spanish and English forms (Katerberg et al., 1977),
student ratings of instruction (Gil}moqe et al., 1978), and

heterosexual social anxiety (Farrell et al., 1979).

Linked conditions and multivapiate estimation. Educational and
vpsycho]ogical measureﬁents often provide multiple scores Which may be
lnterpreted as prof11es (for example, patterns of scores on the
Wechsler Inte]11gence Sca]e for Ch]]dren are used to place students in
special education programs) or composites (for example, the
Comprehensive Test of Basic Skills). Although the most common
procedures used to assess reliability focus on the separate scores or
on the composite, neither method asgésses the linkage or error
covariation among the multiple scqres. For example, subtest scores
from the same ;;st battery are "1inked" by virtud of occurring on the
same test form and on the same occasion. Information about the = ~

covariation among scores is important for designing an optimal D

study, and permitting the deci h-maker to determine the composite
with maximum generalizabi]ity._ For these purposes, a multivariate
analysis is more appropriate (see Cronbach et al., 1972; Shavelson &
Webb, 1981; Travers, 1969; Webb & Shavelson, 1981).

In extending G-theory's notion of multifaceted error variance to
multivariate designs, subtest scores, for example, would be treated
not as a facet of measurement but as a vector of outcome scores.

While univariate G-theory focuses on variance components, multivariate

G-theory focuses on matrices of variance and covariance components.




The matrix of varianceé and covariances among observed scores 1is
decomposed into matrices of components of variance and covariance.
The expected mean square and cross-product equations from a
multivariate analysis of variance are solved in analogous fashion to N
their univariate counterparté. For example, the decompositio of the \\\
variance-covariance matrix of observed scores in a one-facet, crossed

: deﬁign with two dependent variables (for -example, the grammar and

paragraph comprehension subtests in a language arts battery) is:

02(1X ) 0(1X ) 02(-‘P) 0(]P32P)

. X
pi pi.27pg

a{,X ) a2(Xo)) | T | olypagp) oF(o)

pT,prg
(obggrved scores) {persons)

+ 0(11329) 02(29) .J

(conditions)

2 - .
o?(,pi,e) o({pi.e,,p9,€)

0(1P1 ,e,ng,E) Uz(ng:e)

. i (residual)
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where lxpi = score on variable 1 for person p observed under

condition i,

2ng = score on variable 2 for person p observed under
condition g, and
1P = abbreviated for ]up :  the universe score on variable

-1 for person p.

In the above equation, the term o(lp,zp) is the covariance between

. . ) : '
universe scores on variables 1 and 2 (grammar and paragraph

comprehension). The term o(li,zg) is the covariance between scores

“on the two variables due to the condition of observation. Facet i .may

be the same as facet g, for example, when the grammar and paragraph
¢omprehension scores are obtained from the same test form (on the same

occasion). The term c(lpi,e;ng,e) is the covariance due to

unsystematic error.”

The matrices of‘variance and covariance components provide
essential informatiéh for deciding whether multiple scores in a
battery should be treated as a profile or a composite as opposed to
separate scores. The matrix of covariance components for universe
scores particularly shows wﬁether it "is reasonable to consider the
scores as representing an underlying dimension, in which case a
profi]e or a composite are reasonable. Small covariance components
relative to the variance components suggest that the scores are not
related and that a composite of the scores would not be interpretable.

Although the components of variance and covariance are of primary

importance and interest. a decisilon-maker may find it useful to obtain

Co . 246

&




b

the dimensions of scores (composites) with maximum generalizability.

. The multivariate extension of the univariate generalizability

coefficient was developed by Joe and Woodward (1976). From a random

effects multivariate: analysis of variance, the canonical variates are .
, .

univers-score plus error variation. For the two-facet fully crossed

design, Joe and Woodward's multivariate coefficient for rélative ( ,

o

decision is

@

. . ‘ e
ENVRE - < "

.' p2 =

a'Vpa 4 2'Vpia + a'Vpja + 2'Ved

nj

nj’ ni'nj'

where V = a matrixX of -variance and covariance

components estimated from mean square

y-
matrices,

”i' and nj' = the number of conditions of facets i and J

-

in a D study, and

- = the vector of canonical coefficients that

v

maximizes the ratio of between-person to

between-person plus within-person variance

component matrices.

There is a set of canonical coefficients (as) for each characteristic
root in the above equation. Each set of canonical coefficients

defines a composite of scores. By definition, the first composite is




the most reliable while the last composite is the least reliable.

This procedurel then, produces the most generalizable composite of

subtest scores,/for example, that takes into account the linkage among

the scores. ~
e An_application of multivariate generalizability theory to . . . ..
arithmetic achievement (reported in Webb, Shavelson, & Maddahian,
1982) will be used as an illustration. Three subtests representing
basic’ computational skills (addition/subtraction, mu]tip]ication,'and
division) were selected from the mathematics battery at grade five
from the Beginning Teacher Evaluation Study (BTES), a research program
désigned fo ideﬁtify effectie teaching behavior in elementary school
reading and mafhematics. A sample of 127 students completed the three
mathematics subtests on two occasions. The design of theimultivariate
study, then, had one facet (occasions) crossed with persons.
Table 3 presents the matrices of components of variance anq
covariance for the three effects in the design: persons, occasions,
and the residual. The subtantial components of covariance for persons
(which is the universe-score component matrix) shows that the three
subtests are substantially related and that it is reasonable to form a S
composite of the scores. The non-zero components of covariance for
the.régjdual show that the tendency for students to be ranked ordered

differently across occasions (interaction between persons and

The dimensions of mathematical skill that have maximum

genéra]izabi]ity are presented in Table 4. When the generalizability

4 ¢

of mathematics scores was estimated for a single occasion, one
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'dimensﬁon wi£h~ggggra1izabi1ity coefficient exceeding .60 emerged from
the’ana1ysis. Thisuaiménsion is a general composite heavily weighted
b& division. The anaWysis.with two occasions produced two dimensions
with genera]izab%]ity coeffftients exceeding .60. The first is the

_____general composite described above; the second is a contrast between

]

porePeA e oo B e

addition/subtraction-and division. Y

Table 3

Estimated Variance and Covariance Components for
Multivariate Generalizability Study of Basic Skills (ng=l)

Source of Addition/Subtraction Multiplication Division
Variation e (1) (2) (3)
Persons (P) (1) 2.27
| (2) 2.08 ‘ 5.64
s (3) 1.07 2.41 3.60
Occasions(0) (1) .00
(2) -.12 ©1.27
(3) -.04 .49 .17
PO, e (1) 2.34
(2) .84 5.84
(3) .00 g .28 1.74
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Table 4

Canonical Variates for Multivariate
Generalizability Study of Basic Skills

no = 1 ng = 2
I II ITI I Il ITI
il; Add1t1bn/$ubtractTﬁw““”““TTT"ft36“”"=:84*MW"*"““:TT-=:¢2“~MW:42vmww“—m~~m~~w~m«mé
2) Multiplication .07 -.11 .31 : 07 -.13 .38
(3) Division 35 .28  -.12 37 .33 -.15
Coefficient of A2
Generalizability (p° ) 71 .44 .33 .83 .61 .50

New Areas of Application

including estimation of .phenomena that change over time and the

This section includes areas that have been developed but rarely
applied in practice, including test design and estimation of universe

scores and profiles, as well as areas that need to be deveioped,

effects of underlying score distributions on estimation and samE]ing
variability of estimators. |

Test design. Generalizability theory can be used in designing
tests; for example, providing information on variability among |
subtests, items within subtests, and item formats. Any of these

characteristics of tests can be used to define the universes of

admissible observati@ms and generalization and can be included as
“_,j'
facets in G and D sggﬁies. Complexly structured tests can even be

considered, as in the case of unequal numbers of items for different
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subtests in a test battery. A straightforward way to deal with this
case is to consider subtest as fixed, and to perform ;eparate G
analyses (with items as a facet) for each subtest. Conditions of the
testing situation, as opposed to the test itself can also be taken

into account, such as occasion, examiner, and scorer.

””""“"“““'“““”E;E%MEETon:ofwuniveFsenseopeswandwppofilesawNAmcontnibuLiOn%wawAMa”~wﬂwwh~m_m%
gené:;lizabi1ity th@g:z\is the estimation'of point estimates of )
universe scores and of score profiles. Cronbach et al. (1972, p. 103)
present an estimation equation (based on Kelley, 1947) for a point

estimate of the universe score which is shown to be more reliable than

observed scores:

Although this procedure could be repeated for each subtest in a test
battery, thus producing a unfverse score profile, it would not take
fui] advantage of the relationships amoné the subtests. .
Crénbach et al. (1972, p. 313-314) show how the correlations
among variables in a tes; battery can be taken into account to produce
a more dependable profile of universe scores. Basically, the
regression equation for a particular score in the ﬁrof11e includes not
only the observed scores on that variable (as in the above equation)
but also the observed scores for all other scores in the set. The set
of multiple regression equation equations produces a profile of
estimated -universe scores for each person. This profile is more

reliable (and usually flatter) than that based on univariate
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regression equations. In an example using data from the Differential

Aptitude Tests (DAT), Cronbach et al. (1972) reported reductions in
error variance as large as 42 percent when all subtests were used aé
predictors compared to error variances from_sing]e predictors. Such
univerée score profiles are useful for guidance decisions and
diagnostic purposes. It is important to note further that the
regression methods outlined here may produce not only flattetr profiles
than observed scores, but sometimes will invert relationships in an
observed-score profile. The important implication for counseling and
research is that observed profiles and those estimated from univariate
regxegsions may be much further from the true profiles than
multivariate estimates.

Changing phenomena vs. steady state phenomena. A1l of the

discussion thus far has assumed that the phenomenon being studied
remains constant over observations. The problem is very complex,
however, when the universe score changes over time, as is the case in
maturation studies (e.g., Bayley, 1968). This problem is particu]ar]y
acute in testing situations which assume no change in true ability or
knowledge across testing situations but in which sufficient time
elapses that true changes do appear. A further complication is that
the growth patterns of different individuals over time may not'be
equivalent. A few inroads into this area are the work of Bryk (1980)
and-Maddahian (1982). J

Underlying sccre distributions. The lack of knowledge about the

impact of varying underlying score distributions on the estimation and

sampling variability of univariate parameters, including universe
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score estimates, variance components, and generalizability
coefficients, and multivariate parameters, including universe score
profile estimation, components of covariance, multivariate
generalizability coefficients, and canonical coefficients, clearly
presents an area in need of development. Issues needing to be

addressed include bias and efficiency of the estimators.
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_sample consisted of 5,479 fourth grade students drawn from a

\

ANALYSIS OF READING COMPREHENSION DATA*

The data set used in this analysis is taken from the 1971 survey
of reading achievement in the United States carried out in conjunction
with the International Association for Educational Achievement's Study

of Reading Comprehension in 15 Countries (Thorndike, 1973). The total

P e e

probability sample of 239 schools scattered across the'United States
(Wolf, 1977). Each of the selected students was asked to Complete a
variety of tests and questionnaires designed to establish the relative
influence of various external factors to the development of reading
achievement and an interest in reading.

The international research program called for the administration
of essentially the same tests (though translated into different
languages) to comparable samples of students in each country. The
“between country" variation in background factors, school organiza-
tion, parental expectation and involvement, cultural importance of
written communication, etc., offered a unique opportunity to use the
natural laboratory to investigate their respective influences. It was
necessary in such a research study,'however, to develop the me” -ure-
ment instruments with great care. They not only had to be of high
psychometric quality, but also had to be capable of translation into a
range of languages so as to yield comparable, relevant, and fair

measures of achievement in all the participating countries. For this -

* This chapter was compiled by David McArthur from contributions by
Bruce Choppin, David McArthur, Raymond Moy, and Noreen Webb.

255




e T T

N s e
'

- 8.2 -

reason, the tests do nst appear “"familiar" in content or style to
those- regularly in use in any one country, but they were judged to be
accessible enough to ﬁhe average student in each country to yield an
appropriately valid measure of achievement.

Two separate reading Eomprehension tests were administered. Each

consisted of short reading passages of between 100 and 200 words,

"”TGTTOWEd“by”a"group"of*mu%tip%euchoicevquestionsmthemanswepswto~which~.

could be found in the passage. The first section consisted of four
reading passages and a total of 21 items. The second section had five
reading passages and 24 items. Treated together for this analysis,
they yield a multiple-choice test of reading comprehension containing
45 items (these are listed in Appendix I).

In order to perform a fair comparison of the different
mathematical modé]s for measuring achievement, it was decided to limit
the analysis to samples of 1,000 students drawn from the master set.
As a back-up and to estimate the stability of the parameters obfﬁfﬁed,
some analyses were repeated on a second, non-overlapping, sample of
1,000 students. Four approaches were applied to the 45 items of the
Reading Comprehension Test for these samples of 1,000 cases: S-P
analysis, Rasch analysis, Generalizability analysis, & 3 parameter
latent trait analysis. Each is taken in turn below.

S-P Analysis

The S-P technique produced item p-values, person total scores,

caution indices for both items and persons, the pair of curves (S &

‘“ 23&;57




P), the overall index of ordering and agreement with a perfect Guttman
scale, and rank positions for both items and persons.
Average difficulty is p=0.532 with a range of‘0.864 to 0.167 (of
Whjch the three, most difficult items are answered correctly no better
‘rﬁhgn chance). D*, the indicator of hypothetical misfit, is 0.506, a
’7fair1y high value. The average caution index for items (Qj*) is
0.250, ranging from 0.101 to 0.395. Eight of the items have caution
indices exceeding 0.333.
In decreasing order of severity, these are items 16, 39, 31, 20,
43, 44, 7, and 42. The range of caution indices (Ci*) for respondents
is from 0.038 to 0.730, with only three persons achieving below 0.050
but twenty-seven achieving above 0.500. There is a strong negative
correlation (r= -0.45) between the item difficulties and their caution
indices. According to this solution, the test appears to contain a
moderate number of items poorly suited to this'samp1e. Many correct
responses are likely to be the result of chance guessing, and fully
one=fifth of the items are exceptionally poor at discriminating
'between ability levels.
When those items with the highest caution indices are dropped

altogether from the S-P analysis, the entire matrix and all associated

dents are

indices for the jtems that remain and for all of the
recalculated. While the truncated test on ;verége is less diffiicult,
there is little comparabie decrease in the overal} index of misfit.
The number of respondents with elevated caution indicés is exagtly
twice that of the first analysis, with the interesting finding that a

proportion of that increase is to be found in the top-scoring 10% of
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the sample. It seems that when some items are removed because
evidence shows that responses to them are generally not in
correspondence with student ability, Ehe S-P approach then penalizes
some of the upper-ability students. This occurs when' a student
manages to get most of the ihc]uded items correct, and most of the
excluded items wrong, but also had one or two additional Qrong

ansers. In the'analysis of the full set of items, those last one or
two wrong answers do not causé\the caution index to.be all that out of
line, but in the truncated set, those wrong answer§ can contribute
heavily. For those students at the opposite end of the ability scale,
both the first and second analyses show a sizeable number of high
caution indices and very few low caution indices.

The low ability students are not measured well by this test,
according to the S-P analysis, and generally fhere js an unanticipated
large number of wrong answers by those whose overall ability level
would have led one to expect success. The same findings proved true
when the second sample of 1000 cases was analyzed, and also were
obtained when the two-sections comprisiné the 45 item test were

analyzed separately.

Rasch Model Analysis

Computations using the same data set made by a Rasch model item
analysis are as follows. For the complete set of*45 items that make

hp'the two tests, the range of item difficulty is 18 wits (or about 4

ERIC | 263




logits). This 5 fairly is typical value for a classroom achievement
test (which pf course this was not!). The test was constructed to
meet the needs 6f an international project and was designed to be
effective in a.broad spectrum of some 20 countries. As a result it
appears not to be matched exactly to this particular samp]é of
students in the USA. Although the easiest item in the test would have
been "difficu]t“vfor fewer than one percent of the sample, the most
difficult item (number 3;) would havelappeared quite easy to about 25
percent. For this particular group of students, the test could

~ theoretically have been improved by the inclusion of one or two more
difficult items.

In general the fit to the Rasch model was quite good. The worst
fitting items were (in order of misfit) 16, 39, 43, 20, 31, 7, and
44. These are all comparatively difficult items. The analysis was
repeated eliminating these items (and item 32) and the overall fit
improved conéiderab]y. However, it should be stressed that only items
39 and 16 were sufficiently poor to the rejected by the usual Rasch
item analysis criteria for fit.

It would appear that the inclusion of more difficult items as
suggested ten lines above, would 1ike1y not have improved the test
overall because of misfit due to guessing. the analysis emphasizes
the seriousness of guessing on a four-way multiple-choice test.

There was a clear tendency for item discrimination to be related
to item difficulty. The easiest items on the test discriminated well

and the harder items comparatively poorly. All the misfitting items




were among the poor discriminators. When the analysis was repeated
omitting the eight poorest fitting items, the trend linking
discrimination to difficulty rémained; Even though the most difficult
items on this test are not really very difficult for most of the
sample of students, it would appear that guessing was vefy
widespread, This would account for the overall relationship between

o

difficulty and discrimination. An index of item disgfimin&t%on'“f”

e

e

deduced from the measure of misfit to thie Rasch model correlated
0.967 with Sato's Caution Index suggesting that these two are
measuring essentially the same thing (fit to-a Guttman model).

To check the stability of the estimation of item difficulty the
analysis run on the first 1000 cases in the data set and reported
above was repeated on the second 1000. The results showed a high
degree of stability. The conventional pxvalues of the items on the
two separate samples of students corre]atéd 0.982, while-the, delta
values resulting‘from the Rasch scaling analysis correlated 0.984.

Each of the two sections of the test was composed of four
clusters of items each relating to a‘short reading passage. These
clusters vary little among themselves in terms of item characteristics
although it may -be noted that the fjrst passage in each section

(Tailor birds and Insects) are easier than those that follow them, and

the final cluster on the record section (Musk Ox) is somewhat less

discriminating than the average.

L




A check was made to see if the items operated differently for
boys and girls. In general no major discrepancies were discovered
although a few differences in ipdividual item difficulty did feach
significance. For example, items 7, 12, 24, 27, and 35 were
relatively easier for the girls while items 16, 32,.33, and 44 were
significantly easier for the boys. When the clusters were examined
further small, but significant, trends were ﬁoted. The passages about
nseals" and “the poet" were somewhat easier for the gir]s,‘whi1e th;

passage about "eskimos" s]ightl& favored the boys.

Generalizability Analysis

Genera]izabi]ity’ana]yses were performed to assess the magnitude
of the sources of variation in the data set. The sources of variation 
inciude sex, persons, sections (first vs. second), passages (coded E
in the tables), and items. The variation for persons is considered
here to be the universe score variance (true score variance). AT of
the other sources of variation are considered error. For all cfﬁthe
analyses except that which includes sex, five items were se]ectéd at
random from each passage to make a balanced design. For the analysis
of sex, an equal number,of boys an girls was selected.

Four designs of the basic data set were analyzed:

(1) Persons x Sections x Passages (Sections) x Items

(Passages (Sections)) ,

(2) Persons x Sections x Passages x Items (Passages)
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(This design assumes that the same passages appeared in both
sections and is probably not defensible. It was included to help
disentangle the passage x section interaction in design (1).)

(3) Persons x Secticns x Items (Sections)

(This design ignores passage as a source of variation.)

(4) Persons x Sections x Items

(This design assumes that each section has the same items
and is probably not defensible. It was included to help disentangle
the item x section interaction in the above design.)

An additiona] design was included to assess the effects of sex:

(5) Sex x Persons(Sex) x Sections x Passage({Sections) x

Items (Passages(Sections)).

(%his analysis is essentially the same design (1) with the
additional stratification by sex.)

Table 1-gives the variance craponents for the five designs.
These variance components are estimates for one section, one essay,
and one item. The variance component for sections is zero, indicating
that students performed»equa]ly well on both sections of the test.
The persons x sections (PS) interaction is also ]owL indicating that
students are ranked equally on both sections of the;test.

In two sections, passages anh jtems have nontrivial variation,
even if low. Some passages are easier fhan'ther passages and some
items are easier than other items. The variance components relating

to items are the highest. Further, there is some tendency for items %
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to rank students differently. To the extent that the section x jtem
interaction can be interpreted, the position of item difficulties
within one sect.on does not correspond to the other section. In other
words, while the early items in the first section may be the easiest
in that section, the early items in the second section may not be the
easiest items in that section.

 The targe residual component in all designs suggests that there
may be other sources of variation in test scores that have not been
accounted for in the above designs.

Table 2 gives the genera11zab111ty coefficients for a variety of
decision study designs. The coefficients were computed for absolute
decisions: taking into account the absolute level of performance as
well as relative rankings among students. A]]lsources of variation
other than that for persons, therefore, contribute to error. These G
coefficients are considerably lTower than those for relative decisions
which include only the sources of variation interacting with persons
(e.g., PS, PE(S), etc.).

The G coefficients for designs (1) and (2) are similar, as are
those for designs (3) and (4). Increasing the number of items within
each essay beyond 3 or 4 items has little impact on reliability,
particularly, particularly when there are several passages in a
section. Further, the total number of items seems to have the most

impact of reliability; it does not matter how they are distributed

_Ey
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Table 1 |

o
Variance Components from Genera]1zFb1]1ty Analyses

|
|
P xS xE(S)x I(E(S)) PxSxEx I(E) p {s x 1(S PxSxl
Source 2 % Source 2 % Sourc# 2 % Source 2 9
{
P 031  12.4 P .031 12.4 P .031 12.4 P 031 12.4
S .000 0.0 S .000 0.0 s | .000 0.0 S .000 0.0
E(S) .006 2.4 E .005 2.0
1(SE)  .022 8.8 1(E) .007 2.8 1(s) = .027 10.8 I .011 4.4
PS .000 0.0 PS .000 0.0 PS 001 0.4 PS .00l 0.4
PE(S)  .005 2.0 PE .000 0.0
SE 001 .4
PI(E) .004 1.6 PI  .005 2.0
SI(E) .015 6.0 ‘ SI .016 6.4
. PSE .005 2.0 1
PI(SE),e .187 74.5 PSI(E),e .182_72.8 PI(S),e .191 76.4 PSI  .186  74.4
4 ;
—F \

X x P(X) x S x E(S) x I(E(S))

Source 2 %

X .000 0.0 \
S .000 0.0 P = Persons

P(X) 031 12.4 X = Sex 3
E(S) .007 2.8 S = Section (First vs. Second)
XS .000 0.0 E = Passage j
I(SE) .022 8.8 I = Item ,
PS(X) .000 0.0 /
XE(S) ..000 0.0 i
Pl(XS) .005 2.0 /
XI(SE) - .000 0.0 . ;
PI(XSE),e .186 74.4 /




PxSxE(S) x I(ES)
No. Of Sections =1

# of Passages .2
# of Items

.34827
.43304
.49306
53777

(S, 00 - FE R L]

No. Of Sections =2

# of Passages 2

# of Items
2 .51661
3 . «60437
4 .66046
5 69941
P xS x I{S)

No. Of Sections =1

# of Passages 2

# of Items
2 .35798
3 .45310
4 57¢51
5 .57540

No. Of Sections = 2

# of Passages 2
# of Items

.52723
.62363
.68638
.73048

oW

Table 2

Generalizability Coefficients for Absolute Decisions

.44488
.53389
.59324
63563

.61580
.69613
.74469
17723

.45310
.55063
.61704
.66518

.62363
;71020
.76317
.79892

.51653
.60425
.66032
.69926

.68120
.75331
.79541
.82301

.H2251
.61704
.67841
.712146

.68638
.76317
.80839
.83819

PxSxEx I(E)
No. Of Sections =1

# of Passages 2

# of Items
2 .. .34496
3 . .42885
4 .44821
5 .53243

No. Of Sections = 2

# of Passages 2

# of Items
2 .49016
3 57439
4 .62839
5 .66595
PxSxI1

No. Of Sections =1

# of Passages 2

# of ltems
-2 .35393
3 .44750
4 51567
5 56754

No. Qf Sections = 2

# of Passages 2

# of Items
2 50586
3 .60239
4 .66599
5 .71091

.44056
.52860
58728
.62918

.58983
.66848
.66848

.74829

44750
.54325
.60833
.65544

.60239
.69019
.74444

.78128

51142
.59816
.65359
.69206

.65659
.72811
.72811
.79761

.51567
.60833
.66838
.71046

.66592
.74444
.79107
82197
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4

across passages. For example, four passages with two items each has
_\\\&?Gﬂt the same reliability as two passages with four .items each. The
same result holds for sections; it does not matter how items are
distributed across sections. For example, in design (1), one section
with four passages with two items each has a G coefficient of .52; one
section with two passages with four items each has a G coefficient of
.52. All of the above combinations have eight items fotal. Similar
combinations with a total of 16 items have G coefficient ranging from
.66 to .68.
The final ana]yéis examinaed sex as a source of variation. The
component for sex was zero, indicating that boys and girls showed
equal mean performance. Furthermore, the inclusion of sex did not

affect any other compenent. In other words, items, passages and

\,,:3 sections rénked boys and girls similarly. This finding seems to |

conflict somewhat with the finding in the Rasch analysis that some
items ranked boys and girls differently.

Three-Parameter Latent Trait Anaiysis

With the introduction of an improved version of the LOé}ST
th uter program for estimating the parameters in latent trait models,
itsa&se for examining test behavior is likely to become more
widesp. 'ad.” However, a problem remains in the evaluation of the
results, as the parameters derived by the program are likely to be

unstable. The prob]em is to identify the sources of instability and

to assess their relative effects on the parameter estimates. The

274
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three sources of instability are:

1) Non-unidimensionality of the item responses,

2) Mis-specification of the item response model, and

3) Inadequacies of the estimation procedures.
0f these three sources, non-unidimensiohality has the most serious
impact for test users. Under tnjs ¢ircumstance, items cannot be
characterized as having uniquely identified parameters and examinee
abilities estimated from any derived item parameters are left
uﬁdefined as well. As an end result, one might be in no better
position than if original raw number correct scores is used. In fact,
one's position could be worse, in fact, if the test user were to act
as if the ability estimates were item-free and sample-free.

If the sources of instability are duelto model mis-specificatioq
or estimation inadequacies, and not.due to non—dnidimensiona]it}}’fﬁén
one can speak of trJe values for both item and ability parameters
which are only being inaccurately estimated. In this case, increased
stability may be obtained through relatively straightforward fixes,
such as going from a one-parameter model to a three-parameter, or
increasing sample sizes. However, more complicated solutions may be
needed, such as the development of a new model with different types of
parameters.

‘Without the presence of external criteria it is difficult to
separate out the v&éious sources of instability; however, it is

possible to gather circumstantial evidence that may enable one to

deduce their relative effects. Under ideal circumstances, both item
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and examinee parameters should be estimable and stable regardless of
the item and the examinees used in the estimation procedure.
Therefore, one would expect that item parameters estimated from two
separate'runs on independent samples of examinees should correlate
very highly with one another. Likewise examinee abilities estimated
for independent subsets of items but calibrated to the same latent
trait scale should also correlate very highly with one another. If
these high correlations are maintained across nonrandom samples of
items and examinees, one can place considerably more confidence in the
parameter estimate.

With the Reading Comprehension Test data, the stability of item
parameter estimates was investigated across independent random samples
. using different sample sizes in item sets. Table 3 contains the
Jcorrelationg for each of the three item parameters using different
sample sizes. The correlations are between the item parameter
estimates as they were derived from separate random samples of
examinees, Thus for the‘45—item Reading Comprehension Test, the
Logist program produced 45 difficu]ty‘parameters for a sample of 1,000
examinees. Another Logist run was made with another sample of 1,000
examinees, and again it produced 45 difficulty parameters. The
correlation between these two ‘sets of difficulty parameters appears in
Table 3 in the row labeled b. Similarly, correlations were produced

for the discrimination and guessing parameters a and c.

had




Table 3

Stability Correlation of Item Parameter
Based on Sample Sizes of 1,000 and 500

N = 1,000 : N = 500
{
" a .72 .70
~ b .97 / .95
c .64 / .35
/
. /
Tab]e/ﬁ

Stability Correlation of Item Parameter for )
0dd and Even Item Sets Basq& on Sample Sizes of 1,000

0dd Item (N = 23) Even Items (N = 22)

‘ a .62 .68
F b .97 .96
c .35 .82

Table 5

Stability Correlation of Item Parameter for
Guessable and Non-Guessable Item Sets Based on
Sample Sizes of 1,000

Guessable (N = 14) Non-Guessable (N = 24)

: a .93 .38
b .97 .91
c .82 .25
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The di fficulty—parameter has the highest corre]ation’(.9699),
dfgéfimination is next highest (.7225), and the guessing parameter is
Towest (.6448). In order to investigate the effect of sample sizes on
_the stability of estimates similar correlations were produced with
sample sizes of 500. Both a and b parameters maintained the same
magnitudes (.9546 and .7027 respectively), but the correlation for the

guessing parameter drops considerably (to .3502). This suggests the e

’,
-

importance of sample size in the estimation of the c parameter;

however, the discrimination parameter correlations of/472 and .70 also t
e

7
-

indicate room for improvement. ) L '
Besides the effect of examinee samp1g/sizes, tﬁe number of items F?

being estimated may also have an effect on the stability of the '

estimation procedures. Because Logist utilizes m;ximum 11ke1?hood

estimate procedures, the estimates are likely to be biased, e%pecia]]y

when the total number of examineses by items observations are Himited

(Andersen, 1973). Table 4 illustrates the effect of reducing the

number of items by‘half. Usjng samﬁ]e sizes cf 1,000, the

correlations wére calculated for odd items and again for even items.

The stability of the difficulty paraﬁeters remains high (.97 and .96

for the odd and evén item sets respectively), but the stability of the'

discrimination parameters drops. Surprisingly, however, the c / o

parameter stability goes up considerably for the even items but falls

for the odd items. This appears to suggest that the stability of the

item parameters independent of sample sizes has a lot to do with the
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types of items included in the analysis. In other words, the
unidimensionality of the items in the Readﬁng Comprehension Test is

questionable.

Pursuing this line of regsoning, it was felt that the 45 items
could be classified in some way to produce more homogeneous item
sets. Because the influence of guessing has received quite a lot of‘
attention in the application of the three-parameter model, one method
of classifying the items is on the basis of their guessability, that
is, the likelihood of getting an item correct without possessing the
requisite know]edgg. In order to classify the item as guessable, the
45 reading items without their corresponaing reading passages were
presented to eight adult coi]ege—educated subjects. Guessable items
were judged to be those for which seven of the eight subjects were
able to answer correctly without h&ving read thegbassages, while
non-guassable 5tems were those which two or fewer subjects were able
to get correct.

In all, 14 items were classified as guessable, and 24 were
classified as non-guessable. The resulting item correlations from the
IEA excminees are based on samp]é sizes of 1,000 and are presented in

Table 5. The stability of parameter estimates goes up for all three

parameters for the guessable items and goes down for the non-guessable

jtems. The stability correlations for the discrimination parameter
goes up considerably for the guessable items (to a respectable .93),

and the correlation for the ¢ parameter also goes up (to .82). For




the nonlguessab1e items, the a and c parameters go down (to .38 and
.25, respecfive]y) which seem to indicate that the non-guessable items
are non-unidimensional and that the non-unidimensionality is
responsible for most of the instability of the item estimates.

The strategy used 1n>the preceding three-parameter analysis was
principally one of deduction from available corre]étiona] evidence
without the use of external validating criteria. The general
conclusion for the Reading Comprehension Test data is that the 45
items are not unidimensional and that such non-gﬁidimensiona]ity
considerably affects the stability of Logist estimates. It should be
noted, in particu]&r, that this non—unid%mensiona]ity would not have
been detected through the estimation of difficulty parameters alone as
would be produced by the Rasch analysis.

The results of the threes-parameter study also seemed to provide
some evidance for the nature of the reading test behavior of the set
of examinggs. It seems that much of what is called reading ability
depends on what the student brings to the reading situation, %ae., his
or her own experiences with and exposure to particular topics. This
may underly the higher stability of the parameter estimates for the
guessable items as contrasted with the non-guessable items. The
non-unidimensionality of the latter should not be too surprising since
examinées, presumably, must read the passages béfore they select an
answer, and their subsequent-.ability to respond correctly to the item
is probably a function of several of reading compmrehension and

" test-taking s:rategies.
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SUMMARY PAPER

J. Ward Keesling \

I. Introduction: What should a measurement model provide?

A. An assessment of the fit of the model

B. Parameter estimates that capture -information of importance
about the elements of the model (e.g., person and item

characteristics)

1. The estimated parameters for persons are the "measurements"

in the model

2. The estimated parameters characterizing items should
provide insight about the items (e.g., their difficulty
levels) and permit more sophisticated construction and

interpretation of tests

3. The special case of the multiple-choice item. The need
for parameters to characterize distractors.

C. Estimates of the precision of the parameter estimates—to help
us understand the latter statistic:.

D. Overview of the chapter
II. Evaluation of the models given the above criteria

A. Llogistic models
B. S-P model
C. G-Theory (is this really a measurement model?)

AUC models




III. An examination of the salience of the models to three types

of use

A. Assessing pupil progress in a classroom
B. The norm-referenced evaluation
€. The domain-referenced evaluation

(For each, discuss the utility of the information in
the various models, vs the cost of obtaining it.
Attend especially to the patential of item banks.)

Iv. JImplications of microcomputer technology

(Review III, with a view to how technology could help/hinder)

Summary




